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1. Concept of a physically safe reactor

Let us take an ingot of uranium-238 (U238). U238 is
the largest atomic nucleus occurring naturally on
earth. It has 146 neutrons compared to 92 pro-
tons.
In each cubic centimeter of ingot there are 5 · 1022

atoms of U238.

Figure 1: Uranium ingot of radius r and length z.

We also have an external neutron source that
is located left of an uranium-238 ingot and
emits neutrons. The total neutron cross section
consists of scattering cross-section, absorption
cross-section and fission cross-section. We are
most interested in the absorption cross-section of
(U238). When a neutron from an external source
hits an atom of U238 it is absorbed by the nucleus
of a U238. Then U238 becomes uranium-239 (U239),
an unstable element which undergoes beta decay
to produce neptunium-239 (Np239), which then it-
self decays, with a half-life of 2.355 days, into
plutonium-239 (Pu239).

Figure 2: Nucleon-nucleon interactions in
uranium-238 ingot.

When a neutron hits Pu − 239 nuclear fission
takes place with a high probability (fission cross-
section) and two to three (on average 2,6) neu-
trons are released. This leads to the possibility of
the newly generated neutrons inducing succes-
sive nuclear fissions

U239 ⇒ Np239 ⇒ Pu239 ⇒ neutrons

A string of such succeeding nuclear fissions in-
duced by the generated neutrons is called a chain
reaction.

Figure 3: Nuclear fission chain reaction.

The burning region moves along the direction of
the core axis and generates a burning wave.

Figure 4: Nuclear burning wave.

2. Mathematical Explanation and Analysis
Method

The neutron diffusion equations:
∂n(r, z, t)

∂t
= D∆n(r, z, t) + q(r, z, t) , (1),

ρC̃
∂T (r, z, t)

∂t
= ℵ∆T (r, z, t) + qT (r, z, t) .

Where ρ - is the density, C̃ - specific heat, ℵ - ther-
mal conductivity constant, D - diffusion constant
of neutrons.
The nuclide transformation equations:

∂N8(r, z, t)

∂t
= −Vnn(r, z, t)σ8

aN8(r, z, t) ,

∂N9(r, z, t)

∂t
= Vnn(r, z, t)σ8

aN8(r, z, t)−
1

τβ
N9(r, z, t) ,

∂NPu(r, z, t)

∂t
=

1

τβ
N9(r, z, t)−Vnn(r, z, t)(σPua +σPuf )NPu(r, z, t) ,

∂Ñi(r, z, t)

∂t
= piVnn(r, z, t)σPuf NPu(r, z, t)−

ln 2Ñi

T i
1/2

, i = 1, 6,

∂NFP (r, z, t)

∂t
= (1− pi)Vnn(r, z, t)σPuf NPu(r, z, t) +

ln 2Ñi

T i
1/2

.

where n(r, z, t) - neutron density, Vn - neutron
velocity,N8,N9,NPu,NFP - concentration of U238,
U239, Pu−239 and fission products accordingly, Ñi

- concentration of neutron-rich fission fragments,
σa,σf - absorption cross-section and fission cross-
section of neutron.

3. Simulation results obtained for
one-group approximation

Kinetics of concentration U238, U239, Pu − 239 and
fission products on axis of the cylinder, with the
initial conditions: R = 125cm, Z = 1000m, NPu

N8
= 1

99

Figure 5: t = 135 days

Kinetics of concentration U238, U239, Pu − 239 and
fission products in the cylinder, with the initial con-
ditions: R = 100cm, Z = 800m, NPu

N8
= 2

98

Figure 6: t1 = 110 days and t2 = 210 days

It’s easy to see nuclear burning wave that ap-
peared on the graphics of concentration of neu-
trons, U238, U239 and Pu− 239.

4. Analytical solution

An analytical solution is obtained for three-
dimensional one-group diffusion model. We can
rewrite (1) as:

1

v

∂φ

∂t
= ∇ · (D∇φ) + (k∞ − 1− γφ)Σφ;

where φ - is the neutron flux, v - the neutron ve-
locity, D - the diffusion coefficient, Σa - the macro-
scopic absorption cross-section, k∞ - character-
izes the multiplication factor in an infinite medium
at zero power condition and is fluency dependent,
and the term γ - with negative γ is introduced for
modeling reactivity feedback effects in an approx-
imate manner. The boundary condition is, neu-
tron flux D and Σa are assumed to be constant.
The burn-up effect is described reasonably well
by:

k∞ = k∞(ψ)

where ψ denotes the neutron flux, defined as

ψ =
∫ t

−∞
φ(x, y, z, t′)∂t′

for an asymptotic problem.
The burn-up is assumed to be a parabolic func-
tion of ψ

k∞ = kmax − (kmax − k0)(
ψ

ψm
− 1)2

The traveling wave solution was looked for in the
form of

φ(z, t) = φ(ξ) , ξ = z − ut,

where u is the burn-up wave drift speed and is
much smaller than v.
The singleton wave solution was obtained in the
form of

φ(ξ) = M 2Nsech2(MNξ −D)

5. Conclusion

The realization of a self controlled reactor was
proposed. Numerical solution for the neutron
diffusion equations and nuclide transformation
equations was obtained. Analytical solution is
obtained. The program for the burnup process
simulation taking into account boundary and ini-
tial conditions was written. Reactor activation
and formation of nuclear burning wave (in partic-
ular, Feoktistov neutron-fission progressive wave)
were demonstrated. The multi-group solution for
four groups of neutrons is in progress.


