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1. Introduction

The field of interacting particle systems began as a branch of probability the-
ory in 1960’s. The original motivation came from statistical mechanics, later
it became clear that the models have many applications in sociology, biology,
economics, genetics, epidemology etc. A typical infinite interacting particle
system consists of infinitely many particles, interacting in some position space
(for example Rd). The behavior of an interacting particle system depends very
much on the precise nature of the interaction, and most of the research deals
with a certain type of models in which the interaction is of prescribed form.
The main problems which have been treated involve the long-time behavior
of the system, i.e. the properties as time t →∞.
In physics, all elementary particles and composite particles are either bosons
or fermions (depending on their spin). While fermions obey the Pauli ex-
clusion principle: ”no more than one fermion can occupy a single quantum
state”, there is no exclusion property for bosons, which can occupy the same
quantum state.
We consider certain dynamics – birth-and-death, or kind of ”hopping par-
ticles”, which have fermion processes as their invariant measures. The
Glauber dynamics is a special type of birth-and-death process in Rd. At every
moment of time a particle of our configuration (collection of particles) can die,
and at every moment a new particle can be born at any place in Rd, whereas
the life time of the particle is exponentially distributed.
In the Kawasaki dynamics interacting particles randomly hop over Rd. It
means that at exponentially distributed times a particle of our configuration
can disappear, and appear at any other point in Rd.

2. Glauber and Kawasaki dynamics for Determinantal point
processes

Fix Rd, d ∈ N as position space of paricles, and a Radon, non-atomic measure
ν on (Rd,B(Rd)). The configuration space Γ over Rd is defined as the set of all
subsets of Rd which are locally finite (|A| – number of elements in the set A):

Γ :=
{
γ ⊂ Rd : |γ ∩ Λ| < ∞ for each compact Λ ⊂ Rd

}
.

A point process µ is a probability measure on Γ.
Let K be a linear, Hermitian integral operator on the space L2(Rd, ν) which is
locally of trace class and 000 ≤ K < 111.
The following samples of translation invariant point processes on the plane
(taken from [1]).
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Abstract

We give a probabilistic introduction to determinantal and permanental point processes.

Determinantal processes arise in physics (fermions, eigenvalues of random matrices) and

in combinatorics (nonintersecting paths, random spanning trees). They have the striking

property that the number of points in a region D is a sum of independent Bernoulli ran-

dom variables, with parameters which are eigenvalues of the relevant operator on L2(D).

Moreover, any determinantal process can be represented as a mixture of determinantal

projection processes. We give a simple explanation for these known facts, and establish

analogous representations for permanental processes, with geometric variables replacing

the Bernoulli variables. These representations lead to simple proofs of existence criteria

and central limit theorems, and unify known results on the distribution of absolute values

in certain processes with radially symmetric distributions.

Figure 1: Samples of translation invariant point processes in the plane: Poisson (left), de-

terminantal (center) and permanental for K(z, w) = 1
πezw− 1

2 (|z|2+|w|2). Determinantal processes

exhibit repulsion, while permanental processes exhibit clumping.
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From left to right:
Poisson point process – non-interacting particles, free case;
Determinantal point process – strong repulsion properties;
Permanental point process – clumping behavior.
A point process µ is said to have correlation functions if, for any n ∈ N, there
exists a non-negative, measurable, symmetric function k(n)

µ on (Rd)n such that,
for any measurable, symmetric function f (n) : (Rd)n → [0, +∞],∫

Γ

∑
{x1,...,xn}⊂γ

f (n)(x1, . . . , xn) µ(dγ)

=
1

n!

∫
(Rd)n

f (n)(x1, . . . , xn)k
(n)
µ (x1, . . . , xn) ν(dx1) · · · ν(dxn).

A point process µ having correlation functions

k(n)
µ (x1, . . . , xn) = det(K(xi, xj))

n
i,j=1

is called the fermion (or determinantal) point process corresponding to the
operator K. If in the definition above we have per instead of det then we get
boson (permanental) point process.
We fix a fermion point process µ, and consider corresponding Glauber and
Kawasaki dynamics, which have µ as invariant measure. The generator of
the Glauber dynamics is given by the formula

(HGF )(γ) =
∑
x∈γ

d(x, γ)(F (γ \ x)− F (γ)) +
∫

Rd
b(x, γ)(F (γ ∪ x)− F (γ)) ν(dx).

d(x, γ) describes the death rate, while b(x, γ) describes the birth rate.
The corresponding Dirichlet form of the Glauber dynamics is given by

EG(F, F ) =
∫
Γ

∑
x∈γ

d(x, γ)(F (γ \ x)− F (γ))2µ(dγ).

The generator of the Kawasaki dynamics can be written as

(HKF )(γ) = 2
∑
x∈γ

∫
Rd

c(x, y, γ)(F (γ \ x ∪ y)− F (γ)) ν(dy),

where the coefficient c(x, y, γ) describes the intensity of jumps.
Then the Dirichlet form of the Kawasaki dynamics is

EK(F, F ) =
∫
Γ

∫
Rd

∑
x∈γ

c(x, y, γ \ x)(F (γ \ x ∪ y)− F (γ))2ν(dy)µ(dγ).

Using the theory of Dirichlet forms [2], we prove existence of both dynamics
which have fermion point processes as symmetrizing measures.

3. Spectral gap of Glauber dynamics generator

Another important question which arises in connection with different dynam-
ics is the rate of convergence to equilibrium. One of the characteristics which
give us the information about the speed of convergence is the spectral gap of
the generator. If the spectral gap exists, then convergence is of exponential
rate. For the Glauber dynamics in continuum with invariant Gibbs measure
the problem of the existence of the spectral gap was studied in a whole range
of articles, In all of them the existence of spectral gap was obtained by using
different methods. Nevertheless, in all cases the potential is assumed to be
positive, and this assumption is crucial for the proof. Therefore there emerged
a question, whether the spectral gap exists in the case when the potential has
a negative part. We can show the existence of the spectral gap for a certain
class of pair potentials, which do not have to be positive.
We consider the Glauber dynamics on Rd with d ≡ 1 and invariant Gibbs
measure µ. A Gibbs measure µ, corresponding to a translation invariant pair
potential φ and activity z > 0 is given heuristically through

µ =
1

Z
exp

− ∑
x,y∈γ

φ(x− y)

 dπz,

where φ : Rd → (−∞,∞] is the pair potential – symmetric function, πz – Pois-
son measure.
Consider the class K of pair potentials φ of the form

φ := − ln(1− f ),

where f is a continuous positive definite function such that f (0) ≤ 1.
For potentials from the class K the corresponding Gibbs measure µ exists,
and the generator H fulfills the coercivity inequality for c = 1. The class K
contains also non-positive potentials, for example the one in the picture be-
low.
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