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Preface

The aim of these Lectures Notes is to provide a gentle introduction to the theory of
gradient flows in metric spaces developed in the first part of the book of Ambrosio-Gigli-
Savaré [AGS]. In contrast to [LN1] we do not use the notion of (local) slope of a functional
defined on a metric space. As in [LN1] we use “Crandall-Liggett” type estimates. This
approach is somewhat simpler than the one used in [AGS] but it does not give the optimal
rate of convergence of the approximation scheme obtained in [AGS].

The main result of these notes, Theorem 4.1 is a special case (α = 0; in [AGS]: λ = 0)
of a result of [CD2]. Also in these notes we use recent results of [CD1] which simplify the
approach of [LN1]. For the sake of completeness we give the corresponding estimates of
Crandall-Liggett [CL71] when the operator A is m-accretive in a Banach space (X, ‖ · ‖).

The main difference between the two cases, (X, ‖ · ‖) Banach space and the situation
of Theorem 4.1 is that the “resolvent” operators Jh are contractive in the accretive case
but not (in general) under the assumptions of Theorem 4.1. Finally it should be observed
that if X is a real Hilbert space and the function φ : X → (−∞,∞] is proper, lower
semicontinuous and convex, then, the subdifferential ∂φ is m-accretive, hence the first
approach can be used, and the function φ satisfies the assumption (A) of Theorem 4.1,
providing another approach to the same problem. Combining Lemma 3.2, Proposition 3.1
and Theorem 4.1, one obtains the existence and uniqueness part of the proof of Theorem
4.0.4 of [AGS] as well as other properties of solutions to the evolution variational inequality
(4.0.13) of [AGS].
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1 An “Evolution Variational Inequality” on a metric

space

The aim of this section is to introduce an evolution variational inequality (EVI) on a
metric space which will be the main subject of these notes. We motivate the definition
by means of two examples. We consider in Section 1.1 a gradient flow in RN with the
euclidean metric and in Section 1.2 a “heat flow” in L2(Rn). We show in both cases that
the corresponding solutions satisfy (EVI). In this reformulation of the problem, the linear
structure is not used. In Section 1.3 the definition of a solution to (EVI) is given and
in Section 1.4 we prove an a priori estimate which among other things guarantees the
uniqueness for the corresponding initial value problem.

1.1 Gradient flows in RN

Let H := RN with the euclidean metric and let φ : RN → R be differentiable. We consider
the differential equation

(DE) u̇(t) = −∇φ(u(t)), t ∈ J,

where J is an open interval of R, u̇(t) := d
dt
u(t) and

∇φ(x) :=


∂φ
∂x1

(x)
...

∂φ
∂xN

(x)

 , x ∈ RN .

A solution of (DE) is a function u : J → RN which is differentiable and satisfies (DE).
Moreover

(1.1)
d

dt
φ ◦ u(t) = 〈∇φ(u(t)), u̇(t)〉 = −

∣∣∇φ(u(t))
∣∣2 = −

∣∣u̇(t)
∣∣2 ≤ 0, t ∈ J,

hence φ ◦ u is nonincreasing on J .
In this section we require in addition that ∇φ is Lipschitz continuous. We recall

Definition 1.1. Let (Xi, di), i = 1, 2, be two metric spaces and let F : X1 → X2. The
map F is called Lipschitz continuous if there exists M ≥ 0 such that

(1.2) d2(F (x), F (y)) ≤Md1(x, y)

for every x, y ∈ X1.
If X1 = X2, the map F is called a contraction (in X1) when M = 1 and a strict

contraction (in X1) when M < 1. The smallest constant for which (1.2) holds will be
denoted by [F ]Lip.

Remark 1.1. For any Lipschitz continuous map F we have

(1.3) [F ]Lip = sup

{
d2(F (x), F (y))

d1(x, y)
: x, y ∈ X1, x 6= y

}
.
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For any map F : X1 → X2 we can take the RHS (right-hand side) of (1.3) as the defi-
nition of [F ]Lip. So F is Lipschitz continuous (notation: F ∈ Lip(X1, X2)) iff [F ]Lip <∞.

Returning to (DE), with [∇φ]Lip < ∞, we recall the following global existence and
uniqueness theorem. For every x0 ∈ RN , there exists a unique solution u of (DE) on
J = R such that u(0) = x0.

We shall show that any solution of (DE) satisfies an evolution variational inequality
on X = RN involving only the metric of RN and not its linear structure.

We proceed in 5 steps.

Step 1. “∇φ is quasi-monotone”.

Definition 1.2. Let (H, 〈, 〉) be a real Hilbert space and D(A) be a nonempty subset
of H. A map (operator) A : D(A) ⊂ H → H is called monotone if

(1.4) 〈Ax− Ay, x− y〉 ≥ 0 for all x, y ∈ D(A),

and quasi-monotone if there exists α ∈ R such that A− αI is monotone, equivalently

(1.5) 〈Ax− Ay, x− y〉 ≥ α|x− y|2 for all x, y ∈ D(A).

If α in (1.5) can be chosen positive then A is called strongly monotone.

Setting

(1.6) α(F ) := inf

{
〈Ax− Ay, x− y〉

|x− y|2
: x, y ∈ D(A), x 6= y

}
(possibly −∞) we see that A is quasi-monotone iff α(F ) > −∞, and A is monotone iff
α(F ) ≥ 0.

Finally we observe that if F : H → H is Lipschitz continuous, then

〈F (x)− F (y), x− y〉 ≥ −|F (x)− F (y)| |x− y| ≥ −[F ]Lip|x− y|2, x, y ∈ H;

hence

(1.7) α(F ) ≥ −[F ]Lip

and F is quasi-monotone, since F − βI is monotone for every β ≤ α(F ).

Step 2. “φ is quasi-convex”.
In view of Step 1 there exists α ∈ R such that ∇φ− αI is monotone. Setting

(1.8) e(x) := 1
2
|x|2 for x ∈ RN

and noticing that ∇e(x) = x, x ∈ RN , i.e. ∇e = I, the identity in RN , we see that
∇(φ− αe) = ∇φ− α∇e = ∇φ− αI is monotone.

Set

(1.9) ψ := φ− αe,

then ψ : RN → R is differentiable and∇ψ is monotone, hence ψ is convex as a consequence
of the following lemma.

Lemma 1.1. Let ψ : RN → R be everywhere differentiable with ∇ψ monotone. Then ψ
is convex.
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Proof. Let ∇ψ be monotone and let x, y ∈ RN , t ∈ R. Set

α(t) := ψ((1− t)x+ ty)− (1− t)ψ(x)− tψ(y).

Then α(0) = α(1) = 0 and α is differentiable,

α′(t) = 〈∇ψ((1− t)x+ ty), y − x〉+ ψ(x)− ψ(y).

Let t1 < t2. Observe that [(1− t2)x+ t2y]− [(1− t1)x+ t1y] = (t2 − t1)(y − x). We have

α′(t2)− α′(t1) = 〈∇ψ((1− t2)x+ t2y)−∇ψ((1− t1)x+ t1y),

[(1− t2)x+ t2y]− [(1− t1)x+ t1y]〉 · 1

t2 − t1
≥ 0.

Hence α′ is nondecreasing. If α had a positive maximum ξ ∈ (0, 1), then α′(ξ) = 0 and
in view of the mean value theorem α would be nonincreasing for t < ξ and nondecreasing
for t > ξ. A contradiction. Hence α(t) ≤ 0 for t ∈ [0, 1] and ψ is convex.

We can rewrite (DE) as

(1.10) −u̇(t)− αu(t) = ∇ψ(u(t)), t ∈ J,

where ψ is convex.

Step 3. “∇ψ(x) is a subgradient of ψ at x”.
Let x, h ∈ RN . Since ψ is differentiable at x, we have

ψ(x+ h)− ψ(x) = 〈∇ψ(x), h〉+ o(|h|),

hence

lim
t↓0

1

t

[
ψ(x+ th)− ψ(x)

]
= 〈∇ψ(x), h〉 .

Since ψ is convex, the function t 7→ ψ(x+ th) is also convex, hence the function

0 < t 7→ 1

t

(
ψ(x+ th)− ψ(x)

)
is nondecreasing. Therefore

〈∇ψ(x), h〉 = lim
t↓0

1

t

(
ψ(x+ th)− ψ(x)

) (t=1)

≤ ψ(x+ h)− ψ(x).

Equivalently, we have

(1.11) ψ(z) ≥ ψ(x) + 〈y, z − x〉 for all z ∈ RN ,

where y = ∇φ(x). Any y ∈ RN satisfying (1.11) is called a subgradient of ψ at x.
Actually y = ∇ψ(x) is the only subgradient of ψ at x. Indeed, from (1.11), choosing

z = x+ th, t > 0, h ∈ RN , we deduce

1

t
(ψ(x+ th)− ψ(x)) ≥ 〈y, h〉 .

By taking the limit as t → 0 we get 〈∇ψ(x), h〉 ≥ 〈y, h〉. Replacing h by −h we obtain
equality. Choosing h = y −∇ψ(x) we arrive at y = ∇ψ(x).
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Step 4. “Some computation”.
Combining (1.10) and (1.11) we obtain

〈−u̇(t)− αu(t), z − u(t)〉+ ψ(u(t)) ≤ ψ(z)

for every x, z ∈ RN , t ∈ J .
Setting

(1.12) d2(x, y) := (d(x, y))2 = |x− y|2, x, y ∈ RN ,

and using the definition of ψ, we obtain

1

2

d

dt
d2(u(t), z) + α|u(t)|2 − α 〈u(t), z〉+ φ(u(t))− α

2
|u(t)|2 ≤ φ(z)− α

2
|z|2.

Hence for all t ∈ J , all z ∈ RN , we have

(1.13)
1

2

d

dt
d2(u(t), z) +

α

2
d2(u(t), z) + φ(u(t)) ≤ φ(z).

Step 5. “Integration by parts”.
This step consists of replacing the pointwise derivative in (1.13) by a “weak derivative”.

Multiplying (1.13) by a nonnegative test function η ∈ C∞c (J) (C∞(J) with compact
support in J), and integrating by parts we arrive at

(EVI) −
∫
J

1

2
d2(u(t), z)η̇(t) dt+

α

2

∫
J

d2(u(t), z)η(t) dt ≤
∫
J

[
φ(z)− φ ◦ u(t)

]
η(t) dt,

for every nonnegative η ∈ C∞c (J).

Observe that the integrals in (EVI) are well defined since u ∈ C(J ; RN), φ◦u ∈ C(J ; R)
as well as t 7→ d2(u(t), z), and the supports of η, η̇ are compact in J .

Notice that (EVI) makes sense if we replace (RN , d) by an arbitrary metric space
(X, d), using the notation (1.12), and requiring φ ∈ C(X; R) and the solution u to be
continuous on J with values in X. In Section 1.2 we shall consider an example where we
need to weaken the condition on the functional φ which requires a stronger assumption
for the definition of a solution.

Problem 1.1. Let φ : Rn → R be everywhere differentiable. Show that if ∇φ(x) = Ax
for all x ∈ RN for some N ×N matrix A, then the matrix A is symmetric. Show that in
this case φ(x) = 1

2
〈Ax, x〉+ constant. Find a characterization of [∇φ]Lip (1.3) and α(∇φ)

(1.6) in terms of the eigenvalues of A.

Problem 1.2. Let (H, 〈, 〉) be a real Hilbert space and let A ∈ L(H) be a bounded linear

operator on H. We recall that
n∑
k=0

1
k!
Ak converges in L(H) (with respect to the operator

norm) as n → ∞. We denote the limit by eA, the exponential of A. Moreover, given x0

and f ∈ H, the function u : R→ H defined by

(1.14) u(t) = etAx0 +

∫ t

0

esAf ds, t ∈ R,

is continuously differentiable (C1(R;H))), i.e., lim 1
h
(u(t + h) − u(t)) exists in H for all

t ∈ R and is denoted by u̇(t), and R 3 t 7→ u̇(t) ∈ C(R;H). Moreover, u satisfies the
linear differential equation in H:

(LDE) u̇(t) + Au(t) = f, t ∈ R,
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together with u(0) = x0.
Show that if A is symmetric, i.e.,

〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ H,

then the function u defined in (1.14) satisfies (EVI) with J := R,

φ(x) := 1
2
〈Ax, x〉 − 〈f, x〉 , x ∈ H,

and

α := inf
x∈H
x 6=0

〈Ax, x〉
|x|2

= α(A).

1.2 Heat flow in L2(RN) as a gradient flow in L2(RN)

The aim of this section is to show that the heat flow in L2(Rn) can be viewed as a “gradient
flow” in L2(Rn) with respect to the “Dirichlet” functional.

Let

(1.15) p(t, x) :=
1

(2πt)N/2
e−|x|

2/(2t), t > 0, x ∈ RN ,

be the density of the gaussian probability measure on RN with mean 0 and second mo-
ment Nt, i.e., ∫

RN
p(t, x) dx = 1, t > 0,∫

RN
xkp(t, x) dx = 0, k = 1, . . . , N,∫

RN
|x|2p(t, x) dx = Nt, t > 0.

Let f0 : RN → R be a (Lebesgue) measurable function satisfying
∫

RN |f0|2 dx < ∞. Let
t > 0 and x ∈ RN . Then ∫

RN
p(2t, x− y)|f0(y)| dy <∞,

hence

(1.16) v(t, x) :=

∫
RN
p(2t, x− y)f0(y) dy

is well-defined. We recall without proofs several facts about the function

v : (0,∞)× Rn → R

which will be used later.
The function v is infinitely differentiable in (0,∞)× RN (notation: u ∈ C∞((0,∞)×

RN)). Clearly, if f0 is replaced by g0 such that g0 = f0 a.e. in RN then the RHS of (1.16)
defines the same function v so (1.16) defines a map from L2(RN) into C∞((0,∞)× RN).
The function v satisfies the “heat equation”

(1.17)
∂

∂t
v(t, x) = ∆v(t, x), (t, x) ∈ (0,∞)× RN ,
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where ∆v =
N∑
k=1

∂2

∂x2
k
v.

Set

(1.18) u(t)(x) := v(t, x), t > 0, x ∈ RN .

For t fixed u(t) ∈ C∞(RN) and
∫

RN
(
u(t)(x)

)2
dx < ∞, hence u(t) can be viewed as an

element of L2(RN). Moreover, the map defined by (0,∞) 3 t 7→ u(t) ∈ L2(RN) will be
denoted by u. Then it appears that u ∈ C((0,∞);L2(RN)).

Even more, for every t > 0 we have

(1.19) lim
h→0

∫
RN

∣∣∣1
h

(
u(t+ h)(x)− u(t)(x)

)
− ∂

∂t
v(t, x)

∣∣∣2 dx = 0.

This shows that the map u : (0,∞)→ L2(RN) is (strongly) differentiable in L2(RN). We
denote its derivative at t by u̇(t). Similarly u̇ is differentiable on (0,∞) and ü(t)(x) =
∂2

∂t2
v(t, x), (t, x) ∈ (0,∞) × RN . In fact u is infinitely differentiable (notation: u ∈

C∞((0,∞);L2(RN)). Moreover, for every t > 0 the function u(t) ∈ L2(RN) possesses
weak derivatives of all order which belong to L2(RN), i.e., u(t) ∈ W k,2(RN) for all k ∈ N.
Thus for every multi-index (α1, . . . , αN) x 7→

(
∂α1

∂xα1
· · · ∂αN

∂xαN
v(t, x)

)
is an element of the

equivalence class of
∂α1

∂xα1
· · · ∂

αN

∂xαN
u(t)

for every t > 0.
As a consequence of (1.17) one shows that

(1.20) u̇(t) + Au(t) = 0, t > 0,

where A : W 2,2(Rn) ⊂ L2(RN)→ L2(RN) is defined by

Af := −
N∑
k=1

∂2

∂x2
k

f,

where ∂
∂xk

are weak derivatives.

Moreover, we define for f ∈ W 1,2(RN)

∇f :=


∂
∂x1
f

...
∂

∂xN
f

 ,
the “gradient” of f , where ∂

∂xk
are weak derivatives.

Clearly, ∇ maps W 1,2(RN) into
(
L2(RN)

)N
. The following relation between A and ∇

is essential. We have

(1.21)

∫
RN

(Af)(x)g(x) dx =

∫
RN

N∑
k=1

∂

∂xk
f(x)

∂

∂xk
g(x) dx

for every f ∈ W 2,2(RN), g ∈ W 1,2(RN).

7



Denoting by 〈 , 〉 the innerproduct in L2(RN), we obtain by taking the innerproduct
of (1.20) with z − u(t) where z ∈ W 1,2(RN):

〈−u̇(t), z − u(t)〉 = 〈Au(t), z − u(t)〉
= 〈∇u(t),∇z −∇u(t)〉 = −|∇u(t)|2 + 〈∇u(t),∇z〉

≤ −|∇u(t)|2 + 1
2
|∇u(t)|2 + 1

2
|∇z|2 = −1

2
|∇u(t)|2 + 1

2
|∇z|2,

where | · | denotes the norm in L2(RN).
Moreover, since u ∈ C1

(
(0,∞);L2(RN)

)
we have

〈u̇(t), z − u(t)〉 =
1

2

d

dt
〈u(t)− z, u(t)− z〉 =

1

2

d

dt
|u(t)− z|2 =

1

2

d

dt
d2(u(t), z)

where d(f, g) := |f − g| in L2(RN).
We arrive at

(1.22)
1

2

d

dt
d2(u(t), z) ≤ φ(z)− φ ◦ u(t), t > 0 and z ∈ W 1,2(RN),

where

(1.23) φ(f) :=
1

2

∫
RN
|∇f |2 dx for f ∈ W 1,2(RN).

Observe that t 7→ d2(u(t), z) is continuously differentiable as well as t 7→ 〈Au(t), u(t)〉 =
〈−u̇(t), u(t)〉 on (0,∞).

Hence multiplying (1.22) by nonnegative test functions η ∈ C∞c (0,∞) we arrive at
(EVI) defined in Section 1.1 with X = L2(RN) endowed with the metric induced by the
innerproduct, φ : W 1,2(RN) ⊂ X → R defined by (1.23) and α = 0. Observe that as in
Section 1.1 t 7→ φ ◦ u(t) is (at least) continuous hence locally integrable on J := (0,∞).

The function φ is usually called a Dirichlet form [K]. It is customary to define φ on
the whole of X by setting

(1.24) φ(f) :=

{
1
2

∫
RN |∇f |

2 dx for f ∈ W 1,2(RN),

+∞ otherwise.

D(φ) := {f ∈ L2(RN) : φ(f) <∞} is called the effective domain of φ.
From now on we shall adopt this way of writing.

1.3 Definition of a “gradient flow” on a metric space

Motivated by the two previous examples, we shall define a gradient flow on a metric space
as follows:

Definition 1.3. Let

• (X, d) be a metric space (not necessarily complete),

• φ : X → (−∞,+∞] be proper (i.e. D(φ) := {x ∈ X : φ(x) <∞} 6= ∅),

• α ∈ R.
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Given an open interval J in R, we say that a function u : J → X is a gradient flow (or a
solution to (EVI)) on (X, d) (with respect to the pair (φ, α)), if

i) u ∈ C(J ;X),

ii) φ ◦ u ∈ L1
loc(J), i.e., φ ◦ u|(a,b) ∈ L1(a, b) for every a, b ∈ J such that a < b,

iii) u and φ ◦ u satisfy (EVI) on J .

If, moreover, J = (a, b) or (a,∞) with a, b ∈ R, a < b, and lim
t→a

u(t) = x exists in

(X, d), then we say that the gradient flow starts at x or has x as initial value.

Remark 1.2. Clearly the function u defined in Section 1.1 is a gradient flow in RN (with
euclidean metric) where J = R, φ ∈ C1(RN ; R) and α := α(∇φ). Similarly the function
u defined in Section 1.2 is a gradient flow in L2(RN) where J = (0,∞), φ is the Dirichlet
form (1.24) and α = 0. Moreover, one can show that lim

t→0
u(t) = f0 in L2(RN). Hence this

gradient flow has f0 as initial value.
Since u(t) ∈ W 2,2(RN), we could have chosen for the functional φ, its restriction to

W 2,2(RN), namely

(1.25) φ1(f) :=

{
1
2

∫
RN (−∆f)f dx for f ∈ W 2,2(RN),

+∞ otherwise.

It appears that φ is lower semicontinuous on L2(RN) but not φ1. This property will play
an important role in the proof of existence of solutions to (EVI).

1.4 An a priori estimate

The aim of this subsection is to establish an a priori estimate for solutions to (EVI). This
estimate implies uniqueness for the corresponding initial value problem.

Proposition 1.1. Suppose u and v are two solutions to (EVI) (gradient flows) with respect
to (φ, α) on an open interval J of R. Then the following estimate holds:

(1.26) d(u(t), v(t)) ≤ e−α(t−s)d(u(s), v(s))

for all s, t ∈ J such that s < t.

In the proof of Proposition 1.1 we shall use the following lemma.

Lemma 1.2. Let J be an open interval of R, g : J → R be continuous and η ∈ C1(J ; R)
with compact support in J . Let a, b ∈ R, a < b, and δ > 0 be such that

supp η ⊆ [a, b] ⊂ [a− δ, b+ δ] ⊂ J.

Then we have

(1.27) −
∫
J

g(t)η̇(t) dt = lim
0<h<δ
h→0

∫ b

a

1

h

[
g(t+ h)− g(t)

]
η(t) dt.
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Noticing that for 0 < h < δ∫ b

a

g(t+ h)η(t) dt =

∫ b+h

a+h

g(t)η(t− h) dt =

∫ b

a

g(t)η(t− h) dt+

∫ b+h

b

g(t)η(t− h) dt,

we get∫ b

a

1

h

[
g(t+ h)− g(t)

]
η(t) dt = −

∫ b

a

g(t)
1

h

[
η(t)− η(t− h)

]
dt+

1

h

∫ b+h

b

g(t)η(t− h) dt.

Since, as h → 0, the integrand of the first integral of the RHS converges uniformly to
g(t)η̇(t) and the second term tends to g(b)η(b) = 0, the lemma is proved.

Lemma 1.3. Let J be an open interval of R, let f1 ∈ C(J ; R) and f2 ∈ L1
loc(J). Then

the following assertions are equivalent.

(i) −
∫
J
f1(t)η̇(t) dt+

∫
J
f2(t)η(t) dt ≤ 0 for every η ∈ C∞c (J) nonnegative.

(ii) For every t1, t2 ∈ J such that t1 < t2

f1(t2)− f1(t1) +

∫ t2

t1

f2(r) dr ≤ 0.

Proof. (ii) =⇒ (i).
We apply Lemma 1.2 with g(t) := f1(t). We obtain

−
∫
J

f1(t)η̇(t) dt = lim
0<h<δ
h→0

∫ b

a

1

h

[
f1(t+ h)− f1(t)

]
η(t) dt

(ii)

≤ lim
0<h<δ
h→0

∫ b

a

(
−1

h

∫ t+h

t

f2(r) dr
)
η(t) dt =

∫ b

a

−f2(t)η(t) dt

observing that
∫ ·+h
· f2(r) dr → f2(·) in L1(a, b) as h→ 0.

(i) =⇒ (ii).
Using a standard approximation by means of (Sobolev) mollifiers one can show that the

test functions η can be chosen nonnegative absolutely continuous (in particular Lipschitz
continuous) with compact support in J . Given t1, t2 ∈ J with t1 < t2 we choose as
test functions ηn for n large enough the linear interpolation of ηn(t1) = ηn(t2) = 0 and
ηn(t1 + 1

n
) = ηn(t2 − 1

n
) = 1 on the interval [t1, t2] and 0 outside.

We obtain

n

∫ t2

t2−1/n

f1(t) dt− n
∫ t1+1/n

t1

f1(t) dt+

∫ t2

t1

f2(t)ηn(t) dt ≤ 0.

Taking the limit as n→∞ we arrive at (ii).

Remark 1.3. Applying Lemma 1.3 to (EVI) we get

(1.28)
1

2
d2(u(t2), z)− 1

2
d2(u(t1), z) +

α

2

∫ t2

t1

d2(u(t), z) dt

≤ (t2 − t1)φ(z)−
∫ t2

t1

φ(u(t)) dt

for every [t1, t2] ⊂ J and z ∈ D(φ) (see Remark 4.0.5 of [AGS]).
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We shall choose in (EVI) test functions η of the form η(t) := eαtη̃(t) where η̃ ∈ C∞c (J)
nonnegative we obtain

−
∫
J

1

2
d2(u(t), z)

[
eαt
(

˙̃η(t) + αη̃(t)
)]
dt

+

∫
J

α

2
d2(u(t), z)eαtη̃(t) dt ≤

∫
J

eαr
(
φ(z)− φ(u(r))

)
dr.

So the LHS reduces to

−
∫
J

1

2
d2(u(t), z)eαt ˙̃η(t) dt

and by applying again Lemma 1.3 we obtain

(1.29)
1

2
eαt2d2(u(t2), z)− 1

2
eαt1d2(u(t1), z) ≤

(∫ t2

t1

eαr dr

)
φ(z)−

∫ t2

t1

eαrφ(u(r)) dr

for every t1, t2 ∈ J with t1 < t2, and any z ∈ D(φ).
Now we are in a position to prove Proposition 1.1.

Proof. Suppose u and v are two solutions of (EVI) with respect to (φ, α) (gradient flows)
on an open interval J of R. Set

g∆(t) := 1
2
e2αtd2(u(t), v(t)), t ∈ J.

Clearly g∆ ∈ C(J). We want to show that g∆ is nonincreasing on J . In view of Lemma
1.3 with f := g∆, z := 0, and Lemma 1.2 with g := g∆, it is sufficient to prove

lim
0<h<δ
h→0

∫ b

a

[
g∆(t+ h)− g∆(t)

]
η(t) dt ≤ 0

for any η ∈ C∞c (J) nonnegative, with a, b, δ as in Lemma 1.2.
We have

g∆(t+ h)− g∆(t) = e2α(t+h) 1
2
d2(u(t+ h), v(t+ h))− e2αt 1

2
d2(u(t), v(t))

= eα(t+h)
[
eα(t+h) 1

2
d2(u(t+ h), v(t+ h))− eαt 1

2
d2(u(t), v(t+ h))

]
+ eαt

[
eα(t+h) 1

2
d2(u(t), v(t+ h))− eαt 1

2
d2(u(t), v(t))

]
.

Using (1.29) both for u and v, we obtain[
eα(t+h) 1

2
d2(u(t+ h), v(t+ h))− eαt 1

2
d2(u(t), v(t+ h))

]
≤
[(∫ t+h

t

eαr dr

)
· φ ◦ v(t+ h)−

∫ t+h

t

eαrφ ◦ u(r) dr

]
and[

eα(t+h) 1
2
d2(u(t), v(t+ h))− eαt 1

2
d2(u(t), v(t))

]
≤
[(∫ t+h

t

eαr dr

)
· φ ◦ u(t)−

∫ t+h

t

eαrφ ◦ v(r) dr

]
.
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Hence ∫ b

a

1

h

[
g∆(t+ h)− g∆(t)

]
η(t) dt

≤
∫ b

a

eα(t+h)

(
1

h

∫ t+h

t

eαr dr

)
φ ◦ v(t+ h)η(t) dt

−
∫ b

a

eα(t+h)

(
1

h

∫ t+h

t

eαrφ ◦ u(r) dr

)
η(t) dt

+

∫ b

a

eαt
(

1

h

∫ t+h

t

eαr dr

)
φ ◦ u(t)η(t) dt

−
∫ b

a

eαt
(

1

h

∫ t+h

t

eαrφ ◦ v(r) dr

)
η(t) dt.

Using φ ◦ v(·+ h)
h→0→ φ ◦ v in L1(a, b) as well as 1

h

∫ ·+h
· w(r) dr → w(·) in L1(a, b) for any

w ∈ L1
loc(J), we obtain

lim
0<h<δ
h→0

∫ b

a

1

h

[
g∆(t+ h)− g∆(t)

]
η(t) dt

≤
∫ b

a

e2αtφ ◦ v(t)η(t) dt−
∫ b

a

e2αtφ ◦ u(t)η(t) dt

+

∫ b

a

e2αtφ ◦ u(t)η(t) dt−
∫ b

a

e2αtφ ◦ v(t)η(t) dt = 0.

2 The Hilbert space case

Let (X, 〈·, ·〉) be a real Hilbert space with corresponding norm | · | and metric d(·, ·). Let
e : X → R be defined by

(2.1) e(x) := 1
2
|x|2, x ∈ H.

Let φ : X → (−∞,+∞]. We recall that φ is called proper if D(φ) := {x ∈ X :
φ(x) < ∞} is not empty. In this case we call φ convex if D(φ) is a convex subset of X
and the restriction of φ to D(φ) is convex. We call φ lower semicontinuous (l.s.c.) if
{x ∈ X : φ(x) ≤ c} is closed for every c ∈ R.

We are now in a position to state the main “existence” result in the Hilbert space case
when J := (0,∞).

Theorem 2.1. Let (X, 〈·, ·〉) be a real Hilbert space and let φ : X → (−∞,+∞] be proper,
l.s.c. and such that φ − αe is convex for some α ∈ R. Then for every x ∈ D(φ) there
exists a gradient flow u : (0,∞) → X on (X, d) with respect to the pair (φ, α) starting
at x.

Remark 2.1. There are several proofs of Theorem 2.1, but the main ingredient in all these
proofs is the m-accretivity in (H, | · |) of the subdifferential of the function ψ := φ− αe.

We first recall some definitions.

Definition 2.1 (subdifferential). Let ϕ : (X, 〈·, ·〉) → (−∞,+∞] be proper. Let x ∈
D(ϕ) and y ∈ H. We say that y is a subgradient of ϕ at x if the following holds

(2.2) 〈y, z − x〉+ ϕ(x) ≤ ϕ(z) ∀z ∈ D(ϕ).
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The collection of all subgradients of ϕ at x, which is denoted by ∂ϕ(x), possibly empty,
is called the subdifferential of ϕ at x.

We may consider the map x 7→ ∂ϕ(x) as a map from D(∂ϕ) ⊂ X → 2X (the collection
of all subsets of X), where

D(∂ϕ) := {x ∈ D(ϕ) : ∂ϕ 6= ∅}.

The graph of this map is the subset G(∂ϕ) of X ×X defined by

G(∂ϕ) := {(x, y) ∈ D(ϕ)×X : y is a subgradient of ϕ at x}.

It is customary to use the same notation for G(∂ϕ) and ∂ϕ.

Definition 2.2. A subset A of X × X is called monotone if for every pair (xi, yi) ∈ A,
i = 1, 2, we have

(2.3) 〈y2 − y1, x2 − x1〉 ≥ 0,

and cyclically monotone if for every finite cyclic sequence x0, x1, . . . , xn = x0 in D(A)
(i.e., x ∈ H such that for every y ∈ H with (x, y) ∈ A) and every sequence y1, . . . , yn with
(xi, yi) ∈ A, 1 ≤ i ≤ n, we have

n∑
i=1

〈yi, xi − xi−1〉 ≥ 0.

Problem 2.1 ([R]).

(i) Show that if φ : (X, 〈·, ·〉)→ (−∞,+∞] is proper, the subdifferential ∂ϕ is cyclically
monotone, hence monotone.

(ii) Show that if A ⊂ X × X is not empty and cyclically monotone, there exists ϕ :
X → (−∞,+∞] proper, l.s.c. and convex such that A ⊆ ∂ϕ.

Hint : Take (x0, y0) ∈ A and for any x ∈ X set

φ(x) := sup{〈yn, x− xn〉+ 〈yn−1, xn − xn−1〉+ . . .+ 〈y0, x1 − x0〉 :

(xi, yi) ∈ A, i = 1, . . . , n, n ∈ N+}.

Definition 2.3. Let (E, ‖·‖) be a real Banach space. A subset A ⊂ E × E is called
accretive (−A is called dissipative) if

(2.4) ‖x1 − x2‖ ≤ ‖x1 − x2 + h(y1 − y2)‖

for every (xi, yi) ∈ A, i = 1, 2, and every h > 0.

Observe that “accretivity” and “monotonicity” of A are equivalent in a real Hilbert
space (H, 〈·, ·)〉. This follows from

〈x, y〉 ≥ 0 iff |x| ≤ |x+ ty| for all t > 0,

for any x, y ∈ X.

Problem 2.2. Let (E, ‖·‖) be a real Banach space and let A ⊂ E×E be accretive. Show
that the two following assertions are equivalent:
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(i) R(I + hA) = E for some h > 0,

(ii) R(I + hA) = E for all h > 0.

Here R(I + hA) denotes the range of the graph I + hA, i.e.,

R(I + hA) := {y ∈ E : there exists x ∈ D(A) such that (x, y) ∈ I + hA}.

We also write

{y ∈ E : there exists x ∈ D(A) such that y ∈ x+ hAx}.

Definition 2.4. Let (E, ‖ · ‖) be a real Banach space. An accretive graph A ⊂ E ×E is
called m-accretive (−A is called m-dissipative) if R(I + hA) = E for every h > 0.

Example 2.1. If X = R then the graph of the function x 7→ signx is monotone but not
m-accretive. However, the graph defined by

(x, 0) ∈ A for every x < 0

(0, y) ∈ A for every y ∈ [−1, 1]

(x, 1) ∈ A for every x > 0

is m-accretive.

After these preparations we can formulate an important result of the theory of mono-
tone operators in Hilbert spaces.

Proposition 2.1. Let (X, 〈·, ·〉) be a real Hilbert space and let ϕ : X → (−∞,+∞]
be proper, l.s.c. and convex. Then the subdifferential ∂ϕ is cyclically monotone and m-
accretive in (X, | · |). Conversely, if A ⊂ X ×X is a cyclically monotone graph which is
m-accretive, then there exists a proper, l.s.c. and convex functional ϕ : X → (−∞,+∞]
such that A = ∂ϕ. Moreover, if ϕ1 is as above and satisfies A = ∂ϕ1, then there exists
some c ∈ R such that ϕ1(x) = ϕ(x) + c for all x ∈ H.

The first assertion in the conclusion of Proposition 2.1 will be proved below.

Problem 2.3. Prove the second assertion of Proposition 2.1.

Hint : By Problem 2.1 there exists ϕ as in Proposition 2.1 such that A ⊆ ∂ϕ. Hence
I + A ⊆ I + ∂ϕ and (I + A)−1 ⊆ (I + ∂ϕ)−1. Using the m-accretivity of A show that
D
(
(I+A)−1

)
= D

(
(I+∂ϕ)−1

)
= X. Using the monotonicity of ∂ϕ show that (I+∂ϕ)−1

is the graph of a map from X into X.
Hence (I + A)−1 = (I + ∂ϕ)−1. Therefore, I + A = I + ∂ϕ from which we conclude

A = ∂ϕ. This arguments shows that an m-accretive graph is maximal with respect to
inclusion for the collection of accretive graphs in X ×X.

In order to prove Theorem 2.1 we would like to solve the initial value problem for the
differential inclusion

−u̇(t)− αu(t) ∈ ∂ψ(u(t)), t > 0,

where ψ := φ− αe; and then proceed as in Section 1.
This can be done in the following way. Setting A := ∂ψ + αI we observe that this

operator satisfies the condition of the Crandall-Liggett theorem (See Appendix 4).
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Defining

(2.5) Iα :=

{
(0,∞) if α ≥ 0,(

0, 1
|α|

)
if α < 0

or equivalently Iα = {h > 0: 1 + αh > 0}, we have that for h ∈ Iα: (I + hA)−1 is the
graph of a map from X → X (everywhere defined) which we shall denote by Jh:

(2.6) Jhx : = (I + hA)−1x, x ∈ H, h ∈ Iα.

Moreover [Jh]Lip ≤ (1 + αh)−1.
It follows from Theorem I in [CL71], [Appendix 4] that

(2.7) S(t)x := lim
n→∞

(Jt/n)nx, x ∈ D(A)

exists for t > 0, and limt→0 S(t)x = x. We set S(0)x = x for x ∈ D(A). Moreover
{S(t)}t≥0 is a one-parameter semigroup of operators on D(A).

It follows from Theorem II and Lemma 2.3 of [CL71] that the function u : [0,∞)→ X
defined by

(2.8) u(t) := S(t)x, x ∈ D(A)

satisfies: for every T > 0, u|[0,T ] ∈ Lip([0, T ];X), (hence u is differentiable a.e. since X is
reflexive) and for almost all t ∈ (0,∞) we have u(t) ∈ D(A) together with −u̇(t) ∈ Au(t).

In [Br73] Brezis proved that if moreover A − αI is cyclically monotone, then even
for x ∈ D(A), the following holds: u(t) ∈ D(A) for every [ε, T ] with ε > 0, u|[0,T ] ∈
Lip([ε, T ];X),−u̇(t) ∈ Au(t) a.e. in (0,∞).

Proceeding as in Step 5 of Section 1.1 we can show that u is a gradient flow on X with
respect to (φ, α), starting at x. The conclusion of Theorem 1.1 follows by observing that
D(A) := D(∂ψ) = D(ψ) =: D(φ).

If we want to use this approach in the case of a metric space, we need to be able
to define Jhx without using the linear structure of the Hilbert space. This can be done.
Setting

(2.9) Φ(h, x; y) :=

{
1

2h
d2(x, y) + φ(y), y ∈ D(φ)

+∞, otherwise,

we shall show that if h ∈ Iα and x ∈ X, then

(2.10) Jhx is the unique global minimizer of Φ(h, x; ·).

More precisely, we have the following lemma.

Lemma 2.1. Let φ : X → (−∞,+∞] be proper, let α ∈ R, h ∈ Iα and ψ := φ − αe.
Then

i) if x0 ∈ X, x1 ∈ D(∂ψ) satisfy

(2.11) −1

h
(x1 − x0)− αx1 ∈ ∂ψ(x1),

then

(2.12) Φ(h, x0;x1) ≤ Φ(h, x0; z), for every z ∈ X.
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ii) Conversly, if we suppose in addition that ψ is convex, then for any x0 ∈ X and
x1 ∈ D(φ) satisfying (2.12), we have x1 ∈ D(∂ψ) and (2.11) holds.

Proof. i)⇒ ii). Notice that x1 ∈ D(∂ψ) ⊂ D(ψ). We first treat the case α = 0 (φ = ψ).

Φ(h, x0; z)− Φ(h, x0;x1)

=
1

2h
|x0 − z|2 −

1

2h
|x0 − x1|2 + ψ(z)− ψ(x1)

≥ 1

2h
|x0 − z|2 −

1

2h
|x0 − x1|2 +

1

h
〈x0 − x1, z − x1〉

=
1

2h
|x0 − z|2 −

1

2h
|x0 − x1|2 +

1

h
〈x0 − x1, x0 − x1〉+

1

h
〈x0 − x1, z − x0〉

=
1

2h

[
|z − x0|2 + |x0 − x1|2 + 2〈x0 − x1, z − x0〉

]
=

1

2h
|(z − x0) + (x0 − x1)|2

=
1

2h
d2(x1, z)

which is nonnegative.
In the general case we get an extra term in (2.11) and two extra terms coming from

the definition of ψ. We get

Φ(h, x0; z)− Φ(h, x0;x1)

≥ 1

2h
d2(x1, z)− α〈x1, z − x1〉+

α

2
|z|2 − α

2
|x1|2

=
1

2h
d2(x1, z) + α2(|x1|2 − 2〈x1, z〉+ |z|2)

=
1

2
(
1

h
+ α)d2(x, z) ≥ 0

since h ∈ Iα.
ii)⇒ i). Let x0 ∈ X, x1 ∈ D(φ) satisfying (2.12). Let z ∈ D(φ) and t ∈ (0, 1). Then,

using the convexity of ψ, we have (1− t)x1 + tz ∈ D(ψ) and

t[ψ(z)− ψ(z) ≥ ψ((1− t)x1 + tz)− ψ(x1).]

Using the definition of Φ and (2.12), we get

ψ((1− t)x1 + tz)− ψ(x1)

=Φ(h, x0; (1− t)x1 + tz)− Φ(h, x0;x1)

− 1

2h

[
|(1− t)x1 + tz − x0|2 − |x1 − x0|2

]
− α

2

(
|(1− t)x1 + tz|2 − |x1|2

)
≥− 1

2h

[
|(1− t)x1 + tz − x0|2 − |x1 − x0|2

]
− α

2

(
|(1− t)x1 + tz|2 − |x1|2

)
.

Dividing by t and letting t tend to zero we arrive at

ψ(z)− ψ(z1) ≥ −1

h
〈z − x1, x1 − x0〉 − α〈x1, z − x1〉

which is (2.11).
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Having shown that we can define Jhx in terms of the metric d, the functional φ and
α ∈ R, it is important to investigate whether the condition φ − αe convex can also be
expressed in terms of these data. The condition φ−αe means that for every y0, y1 ∈ D(φ)
and t ∈ (0, 1) we have

φ((1− t)y0 + ty1)− αe((1− t)y0 + ty1)

≤(1− t)φ(y0) + tφ(y1)− α(1− t)e(y0)− αte(y1).

Observe that

(2.13) e((1− t)y0 + ty1) = (1− t)e(y0) + te(y1)− t(1− t)e(y0 − y1)

holds for every t ∈ R and y0, y1 ∈ X. Indeed

e((1− t)y0 + ty1) + t(1− t)e(y0 − y1)

=
1

2
(1− t)2|y0|2 +

1

2
t2|y1|2 + (1− t)t〈y0, y1〉

+
1

2
(1− t)2|y0|2 +

1

2
t2|y1|2 − (1− t)t〈y0, y1〉

=(1− t)e(y0) + te(y1).

It follows that φ− αe is convex iff φ satisfies for t ∈ (0, 1), y0, y1 ∈ D(φ),

(2.14) φ((1− t)y0 + ty1) ≤ (1− t)φ(y0) + tφ(y1)− α

2
d2(y0, y1).

In view of (2.13) again the function 1
2
d2(x, ·) satisfies for x, y0, y1 ∈ X and t ∈ R:

1

2
d2(x, (1− t)y0 + ty1) = e((1− t)(y0 − x) + t(y1 − x))

= (1− t)e(y1 − x) + t(y1 − x)− t(1− t)e(y1 − y0).

Therefore, we have
(2.15)

Φ(h, x; (1− t)y0 + ty1)

=
1

2h
d2(x, (1− t)y0 + ty1) + φ((1− t)y0 + ty1)

≤(1− t)
[

1

2h
d2(x, y0) + φ(y0)

]
+ t

[
1

2h
d2(x, y1) + φ(y1)

]
− 1

2
(
1

h
+ α)t(1− t)d2(y0, y1)

=(1− t)Φ(h, x; y0) + tΦ(h, x; y1)− 1

2
(
1

h
+ α)t(1− t)d2(y0, y1)

for every h > 0, x ∈ X, y0, y1 ∈ D(φ), t ∈ (0, 1) iff φ− αe is convex.
Observe that if h ∈ Iα, then the function Φ(h, x; ·) is strictly convex.
We conclude this section by showing that in the Hilbert space case, the functional

Φ(h, x; ·) possesses a global minimizer if the following conditions are satisfied:

• φ is proper and l.s.c.

• ∃α ∈ R such that φ− αe is convex

• x ∈ H and h ∈ Iα.
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In a first step we shall assume φ bounded below. Then clearly Φ(h, x; ·) is also bounded
below. Set γ := inf{Φ(h, x; y) : y ∈ D(φ)}. Let {yn} ⊂ D(φ) be a minimizing sequence
i.e. limn→∞Φ(h, x; yn) = γ. We claim that {yn} is a Cauchy-sequence in H. Indeed from
(2.15) with t = 1

2
and 1

h
+α > 0 we obtain for m,n ≥ 1, noticing that 1

2
(ym + yn) ∈ D(φ),

1

2
(
1

h
+ α)d2(ym, yn) ≤1

2
Φ(h, x; ym) +

1

2
Φ(h, x; yn)− 1

2
Φ(h, x;

ym + yn
2

)

≤1

2
[Φ(h, x; ym)− γ] +

1

2
[Φ(h, x; yn)− γ],

which tends to zero as m,n→∞.
In view of the completeness of (X, d) there exists ȳ ∈ X such that d(yn, ȳ) → 0 as

n→∞. Since φ is l.s.c, Φ(h, x; ·) is also l.s.c., hence

Φ(h, x; ȳ) ≤ lim
n→∞

Φ(h, x; yn) = γ <∞.

Therefore ȳ ∈ D(φ) and γ ≤ Φ(h, x; ȳ) ≤ γ which completes the proof in this case. Now
we remove the additional assumption φ bounded below by using the fact that a proper,
l.s.c convex function in a Hilbert space is bounded below by a continuous affine function
of the form y 7→ a+ 〈b, y〉 where a ∈ R, b ∈ H. [See Appendix 5]. Then it is easy to verify
that Φ(h, x; ·) is bounded below. This implies that Jh (see (2.9)) is well-defined and by
Lemma (2.1), Jhx ∈ D(∂ψ) and satisfies

(2.16)
1

h
(x− Jhx)− αJhx ∈ ∂ψ(x), h ∈ Iα.

In particular, when α = 0, (2.16) implies that R(I + h∂ψ) = X for every h > 0, hence
∂ψ is m-accretive in (X, | · |). (first assertion of Proposition 2.1).

Moreover, when α is not necessarily equal to 0, we may define for h ∈ Iα:

(2.17) φh(x) := Φ(h, x; Jhx) =
1

2h
|x− Jhx|2 + φ(Jhx).

The function φh is called the Yosida-Moreau approximation of φ. (see Section 3 of [LN1]).
(Notice that φn(x) 6= φ(Jnx) in general (!)).

Problem 2.4. Let (X, 〈, 〉) and (E, 〈, 〉E) be real Hilbert spaces. Let T : D(T ) ⊂ X → E
be a closed densely defined operator. Let

φ(x) :=

{
1
2
|Tx|2E, x ∈ D(T ),

+∞, otherwise.

Show that the functional φ is quadratic (i.e. φ(x+y) +φ(x−y) = 2(φ(x) +φ(y)), ∀x, y ∈
D(φ), and φ(λx) = λ2φ(x), ∀λ ∈ R, ∀x ∈ D(φ)), convex and l.s.c. Let T ∗T : D(T ∗T ) ⊂
X → E be defined by D(T ∗T ) := {x ∈ D(T ) : T ∗x ∈ D(T )} and T ∗Tx := T ∗(Tx),
x ∈ D(T ∗T ). Show that ∂φ = T ∗T .

3 Semi-discrete approximation

In this section, we shall consider the problem of minimization of the functional Φ(h, x; ·)
in the case of a metric space in order to define Jhx. Observe that in the Hilbert space
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case, Jhx has the following interpretation. Let A be the operator defined by A := ∂ψ+αI
and let u be a solution to u̇(t) + Au(t) 3 0, t > 0 with initial value x. Then Jhx can be
interpreted as the approximation of u at h obtained by using the “Euler implicit” scheme
1
n
(u(h)− u(0)) + Au(h) 3 0. Iterating we obtain a so-called semi-discrete approximation

of u: x, Jhx, (Jh)
2x, . . . , (Jh)

nx. Given t > 0 and setting h := t
n
, the next step consists of

proving that (Jt/n)nx tends to u(t). In our situation, we shall prove, as in Crandall-Ligett
thereom, that limn→∞(Jt/n)n exists and that this limit is a gradient flow starting at x.
This will be done in the next sections.

Let (X, d) be a metric space and φ : X → (−∞,+∞] be proper. Motivated by the
results of the preceding section, we can formulate the condition introduced in [AGS] which
plays the role of the convexity of φ− αe in the Hilbert case.

(H1) There exists α ∈ R such that for every x, y0, y1 ∈ D(φ), there exists a map γ : [0, 1]→
D(φ) satisfying γ(0) = y0, γ(1) = y1 for which the following inequality holds:

(3.1)

1

2h
d2(x, γ(t)) + φ(γ(t)) ≤ (1− t)

[
1

2h
d2(x, y0) + φ(y0)

]
+ t

[
1

2h
d2(x, y1) + φ(y1)

]
−
(

1

h
+ α

)
1

2
t(1− t)d2(y0, y1),

for every t belonging to (0, 1) and every h > 0 with 1 + αh > 0.

Remark 3.1. In (2.16), γ(t) = (1− t)y0 + ty1, t ∈ [0, 1], which is independent of x.

From now on, we shall always assume that the functional φ is proper and satisfies (H1).
So when we use α ∈ R, it will always refer to the α of assumption (H1). In particular,
when we say h ∈ Iα it means α of (H1). Given x ∈ X and h ∈ Iα we shall define Φ(h, x; y)
as in (2.9) so we have

Φ: Iα ×X ×X → (−∞,∞].

Lemma 3.1. Let φ : X → (−∞,∞] be proper and satisfy (H1). Let h ∈ Iα and x ∈ D(φ).
Then

(i) If γ := inf{Φ(h, x; y) : y ∈ X} > −∞, then, for every y, z ∈ D(φ),

(3.2)
1

8
(
1

h
+ α)d2(y, z) ≤ 1

2
(Φ(h, x; y)− γ) +

1

2
(Φ(h, x; z)− γ).

(ii) If x̄ ∈ D(φ) is a global minimizer of Φ(h, x; ·), then for every z ∈ D(φ),

(3.3) Φ(h, x; z)− Φ(h, x; x̄) ≥ 1

2
(
1

h
+ α)d2(x̄, z).

Proof. Notice that γ < ∞ since Φ(h, x; ·) is proper. (i) Use (H1) with y0 := y, y1 := z,
t = 1

2
and observe γ ≤ Φ(h, x; γ(1

2
)).

(ii) Use (H1) with y0 := z, y1 := x̄. We obtain

1

2h
d2(x, x̄) + φ(x̄) = Φ(h, x; x̄) ≤ Φ(h, x; γ(t))

(1− t)[ 1

2h
d2(x, z) + φ(z)] + t[

1

2h
d2(x, x̄) + φ(x̄)]− 1

2
(
1

h
+ α)t(1− t)d2(x̄, z),
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t ∈ (0, 1). Hence

(1− t)[ 1

2h
d2(x, x̄) + φ(x̄)] ≤ (1− t)[ 1

2h
d2(x, z) + φ(x)]− 1

2
(
1

h
+ α)td2(x̄, z)].

Divding by 1− t and letting t tend to 1 we arrive at (3.3).

Remark 3.2. i) It is obvious that if x̄ ∈ D(φ) satisfies (3.3) it is a global minimizer
of Φ(h, x; ·). Moreover, it follows form (3.3) that Φ(h, x; ·) possesses at most one
global minimizer.

ii) The RHS of (3.3) (which would simply be equal to zero without (H1)) will play an
essential role in the proof of existence of a gradient flow).

iii) Noticing that 1
h

+α > 0 in (3.2) we see that any minimizing sequence {xn} ⊂ D(φ)
is a Cauchy-sequence in (X, d). For the existence theorem, we will assume (X, d)
to be complete which insures the existence of a limit, denoted by x̄ ∈ X. Assuming
moreover φ, hence also Φ(h, x; x̄) to be l.s.c., we obtain

Φ(h, x; x̄) ≤ lim
n→∞

Φ(h, x;xn) = γ <∞.

Hence x̄ ∈ D(Φ(h, x; ·)) = D(φ). Therefore −∞ < γ ≤ Φ(h, x; x̄) ≤ γ < ∞ which
implies that x̄ is a (the) global minimizer of Φ(h, x; ·).

In view of the preceding remarks, it follows that under these additional assumptions
the boundedness from below of Φ(h, x; ·) implies the existence of a minimizer. Therefore
we introduce as in [AGS, (2.4.10)], the next and last assumption on φ, namely:

(H2) There exist x∗ ∈ D(φ), r∗ > 0 and m∗ ∈ R such that φ(y) ≥ m∗ for every y ∈ X
satisfying d(x∗, y) ≤ r∗.

Lemma 3.2. ([AGS, Lemma 2.4.8, p. 52]) Let φ : X → (−∞,+∞] be proper and satisfy
(H1) and (H2). Let α be as in (H1) and x∗, r∗,m∗ be as in (H2). Then for every y ∈ X

(3.4)

{
φ(y) ≥ m∗ if d(x∗, y) ≤ r∗,

φ(y) ≥ c− bd(x∗, y) + 1
2
αd2(x∗, y) if d(x∗, y) > r∗,

where c := φ(x∗) and b := 1
r∗

(φ(x∗)−m∗)− 1
2
α+r∗ with α+ := max(α, 0).

Proof. The first part of (3.4) is simply (H2). We prove the second part. Assume y ∈ D(φ)
with d(x∗, y) > r∗. From (H1) with x := x∗, y0 := x∗, y1 := y and t := r∗

d(x∗,y)
∈ (0, 1) we

find y∗ := γ(t) ∈ D(φ) independent of h ∈ Iα such that

(3.5)
1

2h
d2(x∗, y∗) + φ(y∗) ≤ (1− t)

[ 1

2h
d2(x∗, x∗) + φ(x∗)

]
+ t
[ 1

2h
d2(x∗, y) + φ(y)

]
−
(1

h
+ α

)1

2
t(1− t)d2(x∗, y)

for every h ∈ Iα.
Multiplying by h (> 0) and letting h tend to zero in (3.5) we get

1

2
d2(x∗, y∗) ≤

t2

2
d2(x∗, y) =

1

2
r2
∗,
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hence by (H2)

(3.6) φ(y∗) ≥ m∗.

Using (3.6), the nonnegativity of the first term in (3.5) and d(x∗, x∗) = 0 we obtain

φ(y) ≥ φ(x∗)−
1

t
(φ(x∗)−m∗)−

(1

h
+ α

) t
2
d2(x∗, y) +

α

2
d2(x∗, y).

In case α ≥ 0 we let h tend to +∞ and in case α < 0 we let h tend to 1
|α| .

Using the definition of t we obtain (3.4).

As a simple consequence of Lemma 3.2 we obtain

Corollary 3.1. Let φ : X → (−∞,+∞] be as in Lemma 3.2, and α ∈ R be as in (H1).
Then for every h > 0 satisfying 1

h
+α > 0, for every x ∈ X, M > 0 there exist β > 0 and

δ ∈ R such that

(3.7) Φ(h, x; y) ≥ βd2(x, y) + δ

for every x ∈ X such that d(x, x) ≤M and for every y ∈ X.

Proof (sketch). Use

d2(x, y) ≥ (1− ε2)d2(x, y)−M2(1/ε2 − 1)

and
d2(x∗, y) ≤ (1 + η2)d2(x, y) + (1 + 1/η2)d2(x∗, x)

for 0 < ε, η < 1.

Under the assumptions of Corollary 3.1 the function y 7→ Φ(h, x; y) is bounded from
below. We define φh(x) as its infimum on X.

Definition 3.1. Let φ be as in Lemma 3.2, h+ 1
α
> 0 with h > 0 and α as in (H1).

(3.8) φh(x) := inf
y∈X

Φ(h, x; y).

Remark 3.3. 1) φh is a map from X into R.

2) The notation φh is consistent with the notation of Section 2. Indeed, in Section 2
φh(x) := Φ(h, x; Jhx) where Jhx is the unique minimizer of y 7→ Φ(h, x; y). In this
section the existence and uniqueness of such a minimizer will be obtained only for
x ∈ D(φ).

Lemma 3.3. Let φ : X → (−∞,+∞] be proper, l.s.c. and satisfy (H1), (H2). Then for
every h ∈ Iα the function φh : X → R is continuous and for every x ∈ D(φ) the function
X 3 y 7→ Φ(h, x; y) possesses a unique global minimizer element of D(φ) which we denote
by Jhx. Moreover the map D(φ) 3 x 7→ Jhx ∈ D(φ) is continuous.

Proof. 1. Continuity of φh.
Let xn, x ∈ X, n ≥ 1, be such that lim

n→∞
d(xn, x) = 0. Let y ∈ D(φ), then φh(xn) ≤

Φ(h, xn; y), n ≥ 1, hence

lim
n→∞

φh(xn) ≤ lim
n→∞

Φ(h, xn; y) = Φ(h, x; y).
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Taking the infimum over y ∈ D(φ) we get

lim
n→∞

φ(xn) ≤ φh(x) <∞.

Let yn ∈ D(φ), n ≥ 1, be such that

Φ(h, xn; yn) ≤ φh(xn) +
1

n
, n ≥ 1.

In view of Corollary 3.1 there exists C > 0 such that d(x, yn) ≤ C, n ≥ 1.
We have φh(x) ≤ Φ(h, x; yn), n ≥ 1, hence

φh(x) ≤ lim
n→∞

Φ(h, x; yn) = lim
n→∞

{ 1

2h
d2(x, yn)− 1

h
d(xn, x)d(x, yn) + φ(yn)

}
(since d(x, yn) is bounded)

= lim
n→∞

{ 1

2h

(
d(x, yn)− d(x, xn)

)2
+ φ(yn)

}
≤ lim

n→∞

{ 1

2h
d2(xn, yn) + φ(yn)

}
≤ lim

n→∞
φh(xn).

2. Global minimizer.
Let x ∈ D(φ) and let {yn}n≥1 ⊂ D(φ) be a minimizing sequence, i.e. lim

n→∞
Φ(h, x; yn) =

φh(x). As in the proof in Section 2, in view of the lower semicontinuity of Φ(h, x; ·) and
the completeness of (X, d), it is sufficient to prove that (yn)n≥1 is a Cauchy sequence. If y
denotes the limit, note that Φ(h, x; y) <∞ hence y ∈ D(φ). In order to show that (yn) is
a Cauchy sequence we use assumption (H1) with x := xn, y0 := yn, y1 := ym, t = 1

2
, where

(xn)n≥1 ⊂ D(φ) such that lim
n→∞

d(xn, x) = 0. Let C1 > 0 be such that d(xn, x) ≤ C1,

n ≥ 1. From (H1) we obtain the existence of yn,m ∈ D(φ) satisfying

Φ(h, xn; yn,m) ≤ 1

2
Φ(h, xn; yn) +

1

2
Φ(h, xn; ym)− 1

8

(1

h
+ α

)
d2(yn, ym).

Since Φ(h, xn; yn,m) ≥ φh(xn), we get

(3.9) d2(yn, ym) ≤ 4
(1

h
+ α

)−1[(
Φ(h, xn; yn)− φh(xn)

)
+ Φ(h, xn; ym)− φh(xn)

]
,

for m,n ≥ 1.
Next we show that the right-hand side of (3.9) tends to zero as m,n → ∞. By

Corollary 3.1 we see that any minimizing sequence is bounded, in particular there exists
C2 > 0 such that d(x, yn) ≤ C2, n ≥ 1. It follows that

|Φ(h, xn; yn)− Φ(h, x; yn)| = 1

2h
|d2(xn, yn)− d2(x, yn)|

≤ 1

2h
d(xn, x)

(
d(xn, yn) + d(x, yn)

)
≤ 1

2h
(C1 + 2C2)d(xn, x)→ 0

as n→∞. In view of the continuity of φh, we get

|Φ(h, xn; yn)− φh(xn)| ≤ |Φ(h, xn; yn)− Φ(h, x; yn)|+ |Φ(h, x; yn)− φh(x)|
+ |φh(x)− φh(xn)| → 0.

22



Finally

|Φ(h, xm; ym)− Φ(h, xn; ym)| = 1

2h
|d2(xm, ym)− d2(xn, ym)|

≤ 1

2h
d(xm, xn) · 2(C1 + C2)→ 0 as m,n→∞.

Since |φh(xn)− φh(xm)| → 0, it follows that the right-hand side of (3.9) tends to zero.
Next we prove the uniqueness of the minimizer. Since every minimizing sequence is a

Cauchy sequence it is easy to see that the minimizer is unique (construct a new minimizing
sequence from two minimizing sequences (un) and (vn) converging respectively to u and v.
Then the new minimizing sequence converges to w = u = v). Next we prove the continuity
of x 7→ Jhx. Let xn, x ∈ D(φ), n ≥ 1 be such that limn→∞ d(xn, x) = 0. We have to show
that limn→∞ Jhxn = Jhx. In view of part 2. of the proof of Lemma 3.3 it is sufficient to
prove that {Jhxn} is a minimizing sequence for Φ(h, x; ·). Indeed, if it is the case, {Jhxn}
is a Cauchy sequence whose limit is the global minimizer of Φ(h, x; ·) which is denoted
by Jhx. First we show that {Jhxn} is bounded i.e. there exists y ∈ X (hence for every
y ∈ X) d(y, Jhxn) is bounded in R. Using (3.3) with x := xn and some z̄ ∈ D(φ) (6= ∅)
we get

(3.10)
1

2

(
1

h
+ α

)
d2(Jhxn, z̄) ≤ 1

2h
d2(xn, z̄) + φ(z̄)− φh(xn), n ≥ 1.

Since xn → x and φh is continuous, the RHS of (3.10) is bounded, hence {Jhxn} is
bounded. Let {yn} be a minimizing sequence for Φ(h, x; ·). We know that {yn} is a
Cauchy sequence, hence also a bounded sequence. Now we are ready to show that {Jhxn}
is also a minimizing sequence for Φ(h, x; ·). Set Φ(h, x; Jhxn) = I

(n)
1 + I

(n)
2 where

I
(n)
1 :=

1

2h
d2(xn, Jhxn) + φ(Jhxn), I

(n)
2 :=

1

2h

[
d2(x, Jhxn)− d2(xn, Jhxn)

]
.

Let {yn} ⊂ D(φ) be a minimizing sequence for Φ(h, x; ·) i.e. limn→∞Φ(h, x; yn) = γ̄ :=
infy∈X Φ(h, x; y) > −∞. Then by definition of Jhxn we have

I
(n)
1 ≤ 1

2h
d2(xn, yn) + φ(yn) = I

(n)
3 + I

(n)
4

where I
(n)
3 := 1

2h
d2(x, yn)+φ(yn) and I

(n)
4 := 1

2h

(
d2(xn, yn)−d2(x, yn)

)
. Hence Φ(h, x; Jhxn) ≤

I
(n)
3 +

(
I

(n)
4 + I

(n)
2

)
. We claim that limn→∞

(
I

(n)
4 + I

(n)
2

)
≤ 0. Indeed

I
(n)
4 =

1

2h
(d(xn, yn)− d(x, yn))(d(xn, yn) + d(x, yn)) ≤ 1

2h
d(xn, x)[d(xn, yn) + d(x, yn)].

Since {yn} is a minimizing sequence for Φ(h, x; ·), it is bounded (see part 2. of the proof
above). Moreover, {xn} is also bounded since d(xn, x)→ 0, hence [d(xn, yn) + d(x, yn)] is

bounded and limn→∞ I
(n)
4 ≤ 0. Similarly I

(n)
2 ≤ 1

2h
d(x, xn)[d(x, Jhxn) + d(xn, Jhxn)] and

in view of the boundedness of {Jhxn} we obtain limn→∞ I
(n)
2 ≤ 0. Consequently

lim
n→∞

(I
(n)
4 + I

(n)
2 ) ≤ lim

n→∞
I

(n)
4 + lim

n→∞
I

(n)
2 ≤ 0.

Since limn→∞ I
(n)
3 = γ̄, we obtain limn→∞Φ(h, x; Jhxn) ≤ γ̄ ≤ infn≥1 Φ(h, x; Jhxn). There-

fore limn→∞Φ(h, x; Jhxn) = γ̄ which completes the proof of the continuity of y → Jhy.
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We summarize the results of this section in

Proposition 3.1. Assume

• (X, d) complete metric space,

• φ : X → (−∞,+∞] proper, l.s.c.,

• (H1) and (H2),

• x ∈ D(φ) and h > 0, 1 + αh > 0.

Then the functional Φ(h, x; ·) defined in (2.9) possesses a unique global minimizer in X
denoted by Jhx. Moreover Jhx ∈ D(φ) and satisfies the variational inequality.

(VI)
1

2

(
1

h
+ α

)
d2(Jhx, z)−

1

2h
d2(x, z) + φh(x) ≤ φ(z)

for every z ∈ D(φ), where φh is defined in (3.8).

Proof. The first assertion follows from Lemma 3.3 and (VI) is a reformulation of (3.3)
when x ∈ D(φ). When x ∈ D(φ) we approximate x by a sequence xn ∈ D(φ), replace x
by xn in (VI) and pass to the limit using the continuity of both Jh and φh.

4 Existence of solutions to EVI

The aim of this section is to establish the existence of solutions to (EVI) via the semi-
discrete approximation in the case α = 0. For the general case we refer the reader to
[AGS], [LN1] (where Crandall-Liggett type estimates are used involving the local slope
of φ denoted by |∂φ|(x)) and [CD2] (where Crandall-Liggett type estimates are used not
involving |∂φ|(x)).

In this section we shall make the following assumptions:

• (X, d) is a complete metric space,

• φ : X → (−∞,+∞] is proper and l.s.c..

(A) There exists h0 > 0 such that for every h ∈ (0, h0] and every x ∈ D(φ), the following
variational inequality:

find y ∈ D(φ) satisfying

(4.1)
1

2h
[d2(y, z)− d2(x, z)] +

1

2h
d2(y, x) + φ(y) ≤ φ(z)

for all z ∈ D(φ),

possesses a solution.

Remark 4.1. i) (4.1) is (VI) with α = 0. It follows from Proposition 3.1 that if φ satisfies
(H1) with α = 0 and (H2), then φ satisfies (A).

ii) Clearly if y ∈ D(φ) satisfies (4.1), then y is a global minimizer of Φ(h, x; ·). Since
1

2h
d2(y, z) + Φ(h, x; y) ≤ Φ(h, x; z) for every z ∈ D(φ), this global minimizer is unique

(choose z ∈ D(φ) global minimizer).
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Definition 4.1. Let h ∈ (0, h0] and x ∈ D(φ). We denote by Jhx the unique solution
to the variational inequality (4.1) and by Jh the map from D(φ) into D(φ) defined by
x 7→ Jhx. We set J0x := x and J0

hx := x, Jnhx := Jh(J
n−1
h x) for every x ∈ D(φ) and

n ≥ 1. In particular J1
h = Jh.

As a consequence of (A) we have:

there exist x∗ ∈ D(φ), C1, C2 ∈ R such that

(4.2) φ(z) ≥ C1 + C2d(x∗, z)

for every z ∈ D(φ).

Indeed setting x = x∗ ∈ D(φ), h = h0 in (4.1) we get

φ(z) ≥ φ(Jh0x∗) +
1

2h0

d2(x∗, Jh0x∗)−
1

2h0

[d(Jh0x∗, z) + d(x∗, z)] d(x∗, Jh0x∗).

Then (4.2) follows from the triangle inequality.
“Crandall-Liggett estimates”
Our first goal is to show that the sequence {Jmt/mx}, t > 0, x ∈ D(φ), t/m < h0 is

a Cauchy-sequence in (X, d). We proceed as in [CL71]. This is possible thanks to the
following

Lemma 4.1. Let x, y ∈ D(φ), γ, δ > 0, then

(4.3) d2(Jγx, Jδy) ≤ γ

γ + δ
d2(Jγx, y) +

δ

γ + δ
d2(x, Jδy).

Proof. Neglecting the third term in (4.1), which is negative, we get

1

2γ

[
d2(Jγx, z)− d2(x, z)

]
+ φ(Jγx) ≤ φ(z)

1

2δ

[
d2(Jδy, ẑ)− d2(y, ẑ)

]
+ φ(Jδy) ≤ φ(ẑ)

for every z, ẑ ∈ D(φ). Setting z := Jδy, ẑ := Jγx and adding the two inequalities we
obtain (

1

γ
+

1

δ

)
1

2
d2(Jγx, Jδy) ≤ 1

2δ
d2(Jγx, y) +

1

2γ
d2(x, Jδy).

Multiplying by 2 γδ
γ+δ

we arrive at (4.3).

Remark 4.2. In case (X, ‖ · ‖) is a real Banach space and A ⊂ X ×X is m-accretive [See
Appendix 4], and Jh := (I + hA)−1, h > 0 we have

‖Jγx− Jδy‖ ≤
γ

γ + δ
‖Jγx− y‖+

δ

γ + δ
‖x− Jδy‖

for every x, y ∈ X and γ, δ > 0. Indeed by accretivity of A we get

‖Jγx− Jδy‖ ≤
∥∥∥∥Jγx− Jδy +

γδ

γ + δ

[
1

γ
(x− Jγx)− 1

δ
(y − Jδy)

]∥∥∥∥
≤ γ

γ + δ
‖Jγx− y‖+

δ

γ + δ
‖x− Jδy‖,
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using the fact that (Jγx,
1
γ
(x − Jγx)) ∈ A and (Jδx,

1
δ
(y − Jδy)) ∈ A. Next we set for

x ∈ D(φ), γ, δ > 0:

(4.4) ai,j :=
1

2
d2(J iγx, J

j
δx), i, j ∈ N≥0.

Using (4.3) and a double induction in i and j we obtain

(4.5) ai,j ≤
γ

γ + δ
ai,j−1 +

δ

γ + δ
ai−1,j, i, j ∈ N>0

Remark 4.3. Similarly if

(4.6) bi,j := ‖J iγx− J
j
δx‖

in Remark 4.2 we arrive at

(4.7) bi,j ≤
γ

γ + δ
bi,j−1 +

δ

γ + δ
bi−1,j, i, j ≥ 1.

In view of Lemma A3.1 of Appendix 3 we can estimate bi,j in terms of bi,0 and b0,j. We
have

bi,0 = ‖J iγx− x‖ = ‖(J iγx− J i−1
γ x) + (J i−1

γ x− J i−2
γ x) + · · ·+ Jγx− x‖

≤
i∑

k=1

‖Jkγx− Jk−1
γ x‖.

Using the fact that [Jγ]Lip ≤ 1 we obtain ‖Jkγx − Jk−1
γ x‖ ≤ ‖Jγx − x‖ for every k ≥ 1,

hence bi,0 ≤ i‖Jγx − x‖. Next we make the stronger assumption x ∈ D(A). Noticing
again that (Jγx,

1
γ
(x− Jγx)) ∈ A, we obtain by accretivity of A:

‖x− Jγx‖ ≤ ‖(x− Jγx) + γ[y − 1

γ
(x− Jγx)]‖ = γ‖y‖

for any y ∈ Ax. It follows that

(4.8) |||Ax||| := sup

{
1

γ
‖x− Jγx‖ : γ > 0

}
≤ inf{‖y‖ : y ∈ Ax} <∞,

(4.9) ‖x− Jγx‖ ≤ γ|||Ax|||,

(4.10) bi,0 ≤ (iγ)|||Ax|||, i ≥ 1.

(4.11) b0,j ≤ (jδ)|||Ax|||, j ≥ 1.

Notice that instead of x ∈ D(A) we could choose x ∈ X such that |||Ax||| < ∞.
Applying Lemma A3.1 with K := |||Ax|||, r = 1 we obtain for m,n ≥ 1,

(4.12)
∥∥Jmγ x− Jnδ x∥∥ ≤ |||Ax|||√(mγ − nδ)2 + γδ(m+ n).

In particular choosing γ := t
m

, δ := t
n
, t > 0 we see that {Jmt/mx} is a Cauchy-sequence.

We denote its limit by u(t). Moreover

‖u(t)− x‖ ≤
∥∥u(t)− Jmt/mx

∥∥+
∥∥Jmt/mx− x∥∥ ≤ ∥∥u− Jmt/mx∥∥+ t|||Ax|||
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for every m ≥ 1. Hence ‖u(t)− x‖ ≤ t|||Ax|||. In particular limt→0 u(t) = x. Finally we
obtain some regularity in t by setting γ := t

m
, δ := s

m
, 0 < s < t. We obtain

‖u(t)− u(s)‖ ≤ |||Ax||||t− s|, s, t > 0

and by what preceeds also

(4.13) ‖u(t)− u(s)‖ ≤ |||Ax||||t− s|, s, t ≥ 0.

Hence u ∈ Lip([0,∞);X) and

(4.14) [u]Lip ≤ |||Ax|||.

In order to find estimates for am,n we proceed as in Remark 4.3, so we need to estimate
ai,0 and a0,j. We have

d2(J iγx, x) ≤

(
i∑

k=1

d(Jkγx, J
k−1
γ x)

)2

≤ i

i∑
k=1

d2(Jkγx, J
k−1
γ x)

by the Cauchy-Schwarz inequality. We cannot use as in Remark 4.3 the inequality [Jh]Lip ≤
1. However we have

Lemma 4.2. Let x ∈ D(φ). Then i)

(4.15) φ(Jhx) ≤ 1

h
d2(Jhx, x) + φ(Jhx) ≤ φ(x)

for every h ∈ (0, h0).
ii) Given T > 0 there exists K := K(x, T ) > 0 such that

(4.16)
1

2
d2(J lhx, x) ≤ K(hl)

for every h ∈ (0, h0) and l ≥ 1 satisfying

(4.17) lh ≤ T.

Proof. i) (4.15) follows from (4.1) where z := x, y := Jhx.
ii) From (4.15) we obtain

d2(Jhx, x) ≤ h (φ(x)− φ(Jhx)) ,

d2(J2
hx, Jhx) ≤ h

(
φ(Jhx)− φ(J2

hx)
)
,

...

d2(J lhx, J
l−1
h x) ≤ h

(
φ(J l−1

h x)− φ(J lhx)
)
,

where hl ≤ T , l ≥ 1. Adding we get

(4.18)
l∑

k=1

d2(Jkhx, J
k−1
h x) ≤ h

(
φ(x)− φ(J lhx)

)
.

Using (4.2) we have

(4.19) −φ(J lhx) ≤ |C1|+ |C2|d(x∗, x) + |C2|d(x, J lhx).
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We estimate

d2(J lhx, x) ≤

(
l∑

k=1

d(Jkhx, J
k−1
h x)

)2

≤ l
l∑

k=1

d2(Jkhx, J
k−1
h x)

by the Cauchy-Schwarz inequality. Using (4.17), (4.18) and (4.19):

l
l∑

k=1

d2(Jkhx, J
k−1
h x) ≤ (lh) [φ(x) + |C1|+ |C2|d(x∗, x)] +

1

2
C2

2T (lh) +
1

2
d2(x, J lhx),

since

(lh)|C2|d(x, J lhx) ≤ (lh)

[
1

2lh
d2(x, J lhx) +

lh

2
|C2|2

]
and (lh)2 ≤ (lh)T, l ≥ 1. Hence 1

2
d2(J lhx, x) ≤ K(x, T )(lh), where

(4.20) K(x, T ) := φ(x) + |C1|+ |C2|d(x∗, x) +
1

2
C2

2T.

Combining (4.5), (4.16), (4.17) and Lemma A3.1, we obtain

Lemma 4.3. Let x ∈ D(φ), T > 0. Then, for every t ∈ [0, T ], Jt/mx is well-defined when
m > T

h0
, and

(4.21) lim
m→∞

Jmt/mx

exists. Notice that for t = 0, Jmt/mx = x. Moreover, if u(t) is defined as the limit in (4.21),

then the function u is 1/2-Hölder continuous on [0, T ] and

(4.22) φ(u(t)) ≤ φ(x)(<∞)

for every t ∈ (0, T ].

Proof. i) existence of the limit in (4.21). Let t ∈ (0, T ]. Let m,n > T
h0

, γ := t
m

, δ := t
n
,

then γ, δ ∈ (0, h0), J iγx, J jδx, 1 ≤ i ≤ m, 1 ≤ j ≤ n are well-defined, γm = δn = t ≤ T .
Hence {ai,j} defined in (4.4) satisfy Lemma A3.1 with K = K(x, T ) in (4.20) and r = 1,
in view of (4.5) and Lemma 4.1. Therefore,

1

2
d2(Jmt/mx, J

n
t/nx) ≤ Kt

√
1

m
+

1

n
,

which implies the limit in (4.21) exists in (4.21) thanks to the completeness ofX. Choosing
γ := t

m
, δ := s

m
with 0 < s < t ≤ T , m > T

h0
, we obtain by Lemma A3.1

1

2
d2(Jmt/mx, J

m
s/mx) ≤ K

√
(t− s)2 + 2

ts

m
,

hence
d2(u(t), u(s)) ≤ 2K|t− s|.

Finally from Lemma 4.1, (4.16), (4.17) we obtain 1
2
d2(Jmt/mx, x) ≤ Kt which implies

d2(u(t), x) ≤ 2Kt. Therefore d(u(t), u(s)) ≤
√

2K|t − s|1/2 for every 0 ≤ s < t ≤ T .
Finally we prove (4.22). In view of (4.15) φ(Jt/mx) ≤ φ(x), hence φ(J2

t/mx) ≤ φ(Jt/mx) ≤
φ(x), m > T

h0
. Since φ is l.s.c., we get φ(u(t)) ≤ limm→∞ φ(Jmt/mx) ≤ φ(x).
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Remark 4.4. It follows from the proof of Lemma 4.3 that 1
2
d2(u(t), Jnt/nx) ≤ Kt

√
1
n
. This

rate of convergence is not optimal. Indeed in [AGS, Theorem 4.0.4] under assumptions
(H1) with α = 0 and (H2) it is shown that d2(u(t), Jnt/nx) ≤ t

n
(φ(x)−φt/n(x)). For related

results, we refer the reader to the interesting paper [NS].

In the next lemma we establish an estimate which is useful for weakening the condition
x ∈ D(φ).

Lemma 4.4. Let x ∈ D(φ), y ∈ D(φ) and T > 0. Then Jt/mx and Jt/my are well-defined
for every t ∈ (0, T ] and m > T

h0
and we have

(4.23) lim
m→∞

d(Jmt/mx, J
m
t/my) ≤ d(x, y).

Proof. As in the proof of of Lemma 4.3 we see that Jt/mx, Jt/my are well-defined for
t ∈ [0, T ] and m > T

h0
. For t = 0 (4.23) is trivial. Let t ∈ (0, T ] and m > T

h0
. Set γ := t

m
.

Deleting the third term in (4.1) we obtain

1

2γ
(d2(Jkγ y, z)− d2(Jk−1

γ y, z)) ≤ φ(z)− φ(Jkγ y),

1

2γ
(d2(Jkγx, ẑ)− d2(Jk−1

γ x, ẑ)) ≤ φ(ẑ)− φ(Jkγx),

k = 1, . . . ,m. Setting z := Jkγx and ẑ := Jk−1
γ y, adding and multiplying by γ, we obtain

d2(Jkγx, J
k
γ y)− d2(Jk−1

γ x, Jk−1
γ y) ≤ 2γ[φ(Jk−1

γ y)− φ(Jkγ y)].

Summing over k from 1 to m we get

(4.24) d2(Jmγ x, J
m
γ y) ≤ d2(x, y) + 2γ[φ(y)− φ(Jmγ y)].

Next we replace γ by t/m and observe that limm→∞ J
m
t/my exists by Lemma 4.3. In view

of the lower semicontinuity of φ, {φ(Jmt/my)} is bounded, therefore taking the limm→∞ in

(4.24) we arrive at (4.23).

In the next lemma we assume x ∈ D(φ).

Lemma 4.5. Let x ∈ D(φ) and T > 0. Then, for m > T
h0

and t ∈ [0, T ], Jt/mx is
well-defined and

(4.25) lim
m→∞

Jmt/mx

exists. Moreover, if u(t) is defined as the limit in (4.25), then

(4.26) u ∈ C([0, T ];X),

(4.27) u(t) ∈ D(φ) for t ∈ (0, T ],

and u satisfies

(4.28)
1

2
d2(u(t2), z)− 1

2
d2(u(t1), z) ≤ (t2 − t1)[φ(z)− φ ◦ u(t2)]

for all 0 < t1 < t2 and all z ∈ D(φ).
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Proof. Let x ∈ D(φ), y ∈ D(φ), m,n > T
h0

. We have

d(Jmt/mx, J
n
t/nx) ≤ d(Jmt/mx, J

m
t/my) + d(Jmt/my, J

n
t/ny) + d(Jnt/ny, J

n
t/nx).

By Lemma 4.3 and 4.4, we obtain

0 ≤ lim
m,n→∞

d(Jmt/mx, J
n
t/nx) ≤ d(x, y) + 0 + d(x, y).

Since y ∈ D(φ) is arbitrary we get limm,n→∞ d(Jmt/my, J
n
t/nx) = 0, which implies (4.25).

Set u(t) := limm→∞ J
m
t/mx, t ∈ [0, T ]. Let 0 ≤ s < t ≤ T . Then for m > T

h0
:

d(u(s), u(t)) ≤ d(u(s), Jms/mx) + d(Jms/mx, J
m
s/my)

+ d(Jms/my, J
m
t/my) + d(Jmt/my, J

m
t/mx) + d(Jmt/mx, u(t)).

As above, taking limm→∞, we obtain

d(u(s), u(t)) ≤ d(x, y) +
√

2K(y, T )|t− s|1/2 + d(x, y).

Given ε > 0, choosing y such that 2d(x, y) < ε
2

we find that d(u(s), u(t)) ≤ ε if |t −
s| ≤ ε2

8K(y,T )
whenever K(y, T ) > 0. This implies (4.26). Next we prove (4.28) for t1, t2

rationals. There exists s > 0 positive rational and 0 < q < p ∈ N>0 such that t1 = qs and
t2 = ps. Observe that if k ≥ m

(4.29) (Js/k)
qkx = (J qs

qk
)qkx = (J t1

qk
)qkx

k→∞−→ u(t1).

and

(4.30) (Js/k)
pkx = (J ps

pk
)pkx = (J t2

pk
)pkx

k→∞−→ u(t2).

Set h := s
k
, xl := J lhx, l ≥ 1, x0 := x. From (4.1) (neglecting the 3d term), we obtain for

z ∈ D(φ)

(4.31)
1

2

(
d2(xl, z)− d2(xl−1, z)

)
+ hφ(xl) ≤ hφ(z).

Summing (4.31) over l from l := qk + 1 to l := pk we get

1

2

(
d2(xpk, z)− d2(xqk, z)

)
+ h

pk∑
l=qk+1

φ(xl) ≤ (t2 − t1)φ(z).

By (4.15) and induction we have φ(xl) ≥ φ(xpk), qk + 1 ≤ l ≤ pk, hence

1

2

(
d2(xpk, z)− d2(xqk, z)

)
+ (t2 − t1)φ(xpk) ≤ (t2 − t1)φ(z).

Using (4.29), (4.30) and the lower semicontinuity of φ we arrive at

(4.32) (t2 − t1)φ(u(t2)) ≤ (t2 − t1)φ(z)− 1

2
[d2(u(t2), z)− d2(u(t1), z)].

This implies φ ◦ u(t2) < ∞ and (4.28) for 0 < t1 < t2 rationals. Now let 0 < t1 < t2
with t1 real numbers and t2 rational. We approximate t1 by t1,n < t2, t1,n rationals
and obtain (4.32) with 0 < t1 < t2, t2 rational. Finally approximating t2 by t2,n > t1
rationals and using again the lower semicontinuity of φ we arrive at (4.28) showing that
φ ◦ u(t2) <∞ for any t2 > 0, hence (4.27).
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Finally combining Lemma 4.5 with Proposition 1.1 of [CD1] we arrive at

Theorem 4.1. Let (X, d) be a complete metric space and let φ : X → (−∞,+∞] be
proper and lower semicontinuous. Assume (A) and let h0 > 0 be as in (A). Then
for every t > 0 the operator Jt/m : D(φ) → D(φ) of Definition 4.1 is well-defined when

m > t
h0

. Moreover, limm→∞(Jt/m)mx exists for every x ∈ D(φ). If u(t) is defined as the

limit above, then u ∈ C((0,∞);X), φ ◦ u ∈ L1
loc(0,∞) and u is a solution to (EVI) where

J = (0,∞) and α = 0. Moreover, limt→0 u(t) = x and u is the only solution to (EVI)
where J = (0,∞) and α = 0 having x as initial value. The following additional properties
of u hold.

φ ◦ u(t) <∞ for every t > 0,(4.33)

φ ◦ u : (0,∞)→ R is nonincreasing(4.34)

and

(4.35) φ(x) = lim
t→0

φ ◦ u(t) whenever φ(x) <∞.

The function u satisfies

(4.36)
1

2
d2(u(t), z)− 1

2
d2(u(s), z) ≤ (t− s)[φ(z)− φ(u(t2))]

for every 0 < s < t, and every z ∈ D(φ); Moreover u|[a,b] ∈ AC([a, b];X) for every
0 < a < b (hence [a, b] 3 t → 1

2
d2(u(t), z) ∈ AC[a, b] for every z ∈ D(φ)) and for every

z ∈ D(φ):

(4.37)
d

dt

1

2
d2(u(t), z) + φ(u(t)) ≤ φ(z), a.e. in (0,∞).

Moreover, for every h > 0 the function v(t) := u(t+ h), t > 0 is a solution to (EVI) with
J = (0,∞) and α = 0, having u(h) as initial value. Finally if we set

S(t)x : = lim
m→∞

Jmt/mx, t > 0

S(0)x : = x,

then S(t) : D(φ)→ D(φ) for every t > 0 and

(4.38)

{
S(t+ s) = S(t)S(s), t, s > 0

S(0) = ID(φ)

(4.39) d(S(t+ h)x, S(t+ h)y) ≤ d(S(t)x, S(t)y)

for every t ≥ 0, h > 0, and x, y ∈ D(φ), and finally

(4.40) [0,∞) 3 t→ S(t)x ∈ C([0,∞);X)

for every x ∈ D(φ). The family {S(t)}t≥0 of operators on D(φ) is called a C0-contraction

semi-group of operators on D(φ).
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Proof. It follows from Lemma 4.5 that u ∈ C([0,∞);X), u(t) ∈ D(φ) for every t ∈ (0, T ]
and u satisfies (4.28) on (0, T ) for every T > 0. Hence u ∈ C((0,∞);X) satisfies assertion
(A4) in Proposition 1.1 of [CD1] with α = 0. Moreover, limt→0 u(t) = x by Lemma
4.5. Then all conclusions of Theorem 4.1 except (4.35), (4.38) are direct consequences of
Proposition 1.1 of these notes and Proposition 1.1 of [CD1]. Concerning (4.35) we have
by (4.22), φ(u(t)) ≤ φ(x) for all t > 0. Since u is continuous at 0 and φ is l.s.c, we have
for tn ↓ 0, φ(x) = φ(u(0)) ≤ limn→∞ φ ◦ u(tn). Hence φ(x) = limn→∞ φ ◦ u(tn). Finally

we establish (4.38). Let x ∈ D(φ). Set u(t) := S(t)x, t ≥ 0, then u is a solution to (EVI)
with initial value x. As a consequence of Proposition 1.1 of [CD1] u satisfies (4.37). Given
s > 0 set v(t) := u(t + s). It follows that v ∈ C([0,∞);X), v(0) = u(s) = S(s)x and it
is easy to see that v satisfies (4.37). Again by Proposition 1.1 of [CD1], v is a solution
to (EVI) on (0,∞) with initial value v(0) = u(s). As a consequence of Proposition 1.1
we have v(t) = S(t)v(0), t > 0. Indeed d(v(t), S(t)v(0)) ≤ d(v(t′), S(t′)v(0)) for every
0 < t′ < t, hence by taking the limit as t′ → 0 we obtain

0 ≤ d(v(t), S(t)v(0)) ≤ d(v(0), S(0)v(0)) = 0.

Therefore S(t)S(s)x = S(t)u(s) = S(t)v(0) = v(t) = u(t + s) = S(t + s)x, for t, s > 0.
Since x ∈ D(φ) is arbitrary, the first assertion of (4.38) is proved. The second being
trivial, the proof of Theorem 4.1 is complete.

Appendix 1

Definition A1.1. Let (X, d) be a metric space and a, b ∈ R with a < b. A function
u : [a, b]→ X is called absolutely continuous on [a, b] if to each ε > 0 there corresponds a
δ > 0 such that, for all positive integers n and all families (a1, b1), . . . , (an, bn) of disjoint
open subintervals of [a, b] of total length at most δ, we have

(A1.1)
n∑
k=1

d(u(ak), u(bk)) ≤ ε.

The collection of all such functions is denoted by AC([a, b];X).
Observe that AC([a, b];X) ⊂ C([a, b];X).

We recall a fundamental result of real analysis.

Theorem A1.1. i) Let u ∈ AC([a, b]); R). Then u is differentiable a.e. in (a, b), u′ ∈
L1(a, b) and

(A1.2)

∫ t

s

u′(r) dr = u(t)− u(s) for all a ≤ s < t ≤ b.

ii) Let f ∈ L1(a, b). Then the function t 7→ u(t) =
∫ t
a
f(r) dr is absolutely continuous

on [a, b] and u′(t) = f(t) a.e. in (a, b).

Remark A1.1. ([ABHN, Corollary 1.2.7]) The following generalization of Theorem A1.1
holds. Let X be a reflexive Banach space (in particular a Hilbert space).

(i) If u ∈ AC([a, b];X) then u is strongly differentiable a.e. in (a, b), u′ ∈ L1(a, b;X) and
(A1.2) holds where the integral is a Bochner integral.
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(ii) If f ∈ L1(a, b);X), u(t) :=
∫ t
a
f(s) ds, t ∈ [a, b], then u ∈ AC([a, b];X) and u′(t) =

f(t) a.e. in (a, b).

The following characterization of absolute continuity will be very useful.

Theorem A1.2. Let u : [a, b] → X, (X, d) a metric space. Then u ∈ AC([a, b];X) iff
there exists m ∈ L1(a, b), m ≥ 0, such that

(A1.3) d(u(s), u(t)) ≤
∫ t

s

m(r) dr for all a ≤ s < t ≤ b.

Moreover, if u ∈ AC([a, b];X),

|u̇|(t) := lim
h→0

d(u(t+ h), u(t))

|h|

exists for almost all t ∈ (a, b), |u̇| ∈ L1(a, b),

d(u(s), u(t)) ≤
∫ t

s

|u̇|(r) dr, a ≤ s ≤ t ≤ b,

and if m satisfies (A1.3), then |u̇|(r) ≤ m(r) a.e. |u̇|(t) is called the metric derivative of
u at t.

Corollary A1.3. If u ∈ AC([a, b];X), then the function t 7→ d2(u(t), z) belongs to
AC([a, b]; R) for every z ∈ X.

Appendix 2

The aim of this Appendix is to recall, mostly without proofs, some results concerning
functions of bounded variation.

Let (X, d) be a (not necessarily complete) metric space. Let a, b ∈ R with a < b and
let u : [a, b]→ X. Given a partition π, a = t0 < t1 < . . . < tn = b, let

V (π;u) :=
n∑
i=1

d
(
u(ti−1), u(ti)

)
.

Then u is said to be of bounded variation (with respect to the metric d) if sup
π
V (π;u) <∞.

We denote by BV([a, b];X) the collection of all X-valued functions which are of bounded
variation. We use the notation

(A2.1) V (u; [a, b]) := sup
π
V (π;u) over all partitions π of [a, b].

Clearly if u ∈ Lip([a, b];X) then u ∈ BV([a, b];X) and V (u; [a, b]) ≤ [u]Lip(b−a). As in the
case X = R one shows that if u ∈ BV([a, b];X) and c ∈ (a, b) then u|[a,c] ∈ BV([a, c];X),
u|[c,b] ∈ BV([c, b];X) and

(A2.2) V (u; [a, b]) = V
(
u|[a,c]; [a, c]) + V

(
u|[c,b]; [c, b]).

We shall denote by Vu(t) the real-valued function defined by

(A2.3) Vu(t) := V (u; [a, t]), t ∈ [a, b].
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We have for a ≤ s < t ≤ b

(A2.4) d
(
u(s), u(t)

)
≤ Vu(t)− Vu(s) = V (u; [s, t]).

The function Vu(·) is nondecreasing and satisfies Vu(a) = 0.
Let v : [a, b]→ X. If there exists a nondecreasing function M : [a, b]→ R such that

d
(
v(s), v(t)

)
≤M(t)−M(s)

holds for all a ≤ s < t ≤ b, then v ∈ BV([a, b];X) and Vv(t) ≤M(t)−M(a), t ∈ [a, b].
It follows from (A2.4) that if u ∈ BV([a, b];X), then the set where u is not continuous

is at most countable. Also if Vu(·) is continuous then clearly u is continuous. On the
other hand, it can be shown as in the case X = R that if u is right (resp. left) continuous
at t ∈ [a, b] then Vu(·) is also right (resp. left) continuous at t.

The next lemma is useful.

Lemma A2.1 ([Br73], Appendix). Let u ∈ BV([a, b];X). Then we have for all h in
(0, b− a)

(A2.5)

∫ b−h

a

d
(
u(t), u(t+ h)

)
dt ≤ hV (u; [a, b]).

Proof. Since the set of discontinuity of u is at most countable, the same holds for the
bounded functions t 7→ d(u(t), u(t+ h)), t 7→ Vu(t) and t 7→ Vu(t+ h) on [a, b− h]. Hence
these functions are integrable. Using (A2.4) we have∫ b−h

a

d
(
u(t), u(t+ h)

)
dt ≤

∫ b−h

a

Vu(t+ h)− Vu(t) dt

=

∫ b

a+h

Vu(t) dt−
∫ b−h

a

Vu(t) dt ≤
∫ b

b−h
Vu(t) dt ≤ hVu(b) = hV (u; [a, b]).

A function u ∈ C([a, b];X) is not necessarily of bounded variation but if u is absolutely
continuous, then it is of bounded variation and Vu(·) ∈ AC[a, b] as in the case X = R.
Conversely, if u ∈ BV([a, b];X) and Vu(·) ∈ AC[a, b] then u ∈ AC([a, b];X).

Let v : [a, b] → X be such that there exists a function M : [a, b] → X nondecreasing
and absolutely continuous. Then by what precedes we have v ∈ BV([a, b];X) and Vv(t) ≤
M(t)−M(a), t ∈ [a, b]. It is easy to verify that Vv(·) ∈ AC[a, b] hence v ∈ AC([a, b];X).
Notice that M is absolutely continuous iff there exists m ∈ L1(a, b) nonnegative such that
M(t) −M(s) =

∫ t
s
m(r) dr, a ≤ s < t ≤ b. It follows that for v : [a, b] → X we have

v ∈ AC([a, b];X) iff there exists m ∈ L1(a, b) nonnegative such that

(A2.6) d
(
v(s), v(t)

)
≤
∫ t

s

m(r) dr, a ≤ s < t ≤ b.

In this case (A2.6) implies Vv(t)− Vv(s) ≤
∫ t
s
m(r) dr, hence∫ t

s

d

dr
Vv(r) dr ≤

∫ t

s

m(r) dr, a ≤ s < t ≤ b.

It follows that d
dr
Vv(r) ≤ m(r) a.e. in (a, b).

We conclude this Appendix by showing that if u ∈ AC([a, b];X), then the metric
derivative |u̇|(t) (see Theorem A1.2) exists for almost all t ∈ (a, b), |u̇| ∈ L1(a, b) and

|u̇|(t) =
d

dt
Vu(t) a.e. in (a, b).
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Proof ([AGS], Theorem 1.1.2). Let u ∈ AC([a, b];X) and let Nu be a subset of (a, b) with
measure zero such that d

dt
Vu(t) exists for every t ∈ (a, b) \ Nu. Since u([a, b]) is compact

in X, it is separable. There exists a countable subset E of u([a, b]) which is dense in
u([a, b]). For every e ∈ E the functions d(e, u(·)) ∈ AC[a, b] and let Ne be a subset of
(a, b) with measure zero such that d

dt
d(e, u(t)) exists for every t ∈ (a, b) \Ne.

Set N := Nu ∪
⋃
e∈E

Ne. For t ∈ (a, b) \N set

`(t) := sup
e∈E

∣∣∣ d
dt
d(e, u(t))

∣∣∣ and `(t) = 0, t ∈ N.

Then ` is nonnegative and measurable. We have

d
(
u(s), u(t)

)
= sup

e∈E

∣∣d(e, u(s))− d(e, u(t))
∣∣ ≤ ∫ t

s

`(r) dr, a ≤ s < t ≤ b.

Let t ∈ (a, b) \N . Then

`(t) = sup
e∈E

lim
s→t

∣∣d(e, u(t))− d(e, u(s))
∣∣

|t− s|
≤ lim

s→t

∣∣d(u(t), u(s))
∣∣

|t− s|

≤ lim
s→t

|Vu(t)− Vu(s)|
|t− s|

=
d

dt
Vu(t).

It follows that ` ∈ L1(a, b). Let N` be a subset of (a, b) of measure zero such that every
t ∈ (a, b) \N` is a Lebesgue point of `. For every t ∈ (a, b) \N` we have

lim
s→t

d(u(s), u(t))

|t− s|
≤ `(t).

Hence for every t ∈ (a, b) \ (N ∪N`) we have

lim
s→t

d(u(s), d(u(t))

|t− s|
≤ lim

s→t

d(u(s), d(u(t))

|t− s|
≤ d

dt
Vu(t).

Therefore on this set the metric derivative |u̇|(t) exists and |u̇|(t) = `(t) ≤ d
dt
Vu(t).

On the other hand, since d(u(s), u(t)) ≤
∫ t
s
`(r) dr, a ≤ t < s ≤ b, we have d

dt
Vu(t) ≤

`(t) a.e. in (a, b). It follows that |u̇|(t) = d
dt
Vu(t) a.e. in (a, b).

Appendix 3

The purpose of this Appendix is to state and prove a lemma which is used in the proof
of Remark 4.3 and Lemma 4.3. It is a (symmetric) variant of a lemma due to Crandall–
Liggett [CL71].

Lemma A3.1. Let r, γ, δ,K be real numbers satisfying

(A3.1) 0 < r ≤ 2, γ, δ,K > 0.

Let m,n be positive integers. Let {ai,j}0≤i≤m
0≤j≤n

be nonnegative real numbers satisfying

ai,j ≤
γ

γ + δ
ai,j−1 +

δ

γ + δ
ai−1,j, 1 ≤ i ≤ m, 1 ≤ j ≤ n,(A3.2)

ai,0 ≤ K(iγ)r, 1 ≤ i ≤ m,(A3.3)

a0,j ≤ K(jδ)r, 1 ≤ j ≤ n.(A3.4)
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Then for 1 ≤ i ≤ m and 1 ≤ j ≤ n

(A3.5) ai,j ≤ K
[
(iγ − jδ)2 + γδ(i+ j)

]r/2
.

Proof. Case r = 2. Let ci,j := (iγ − jδ)2 + γδ(i + j), 0 ≤ i ≤ m, 0 ≤ j ≤ n. Then ci,j
satisfies (A3.2) with equality. Indeed,

γ

γ + δ
ci,j−1 +

δ

γ + δ
ci−1,j

=
γ

γ + δ

[
((iγ − jδ) + δ)2 + γδ(i+ j)− γδ

]
+

δ

γ + δ

[
((iγ − jδ)− γ)2 + γδ(i+ j)− γδ

]
=

(
γ

γ + δ
+

δ

γ + δ

)[
(iγ − jδ)2 + γδ(i+ j)− γδ

]
+

2γδ

γ + δ
(iγ − jδ)− 2γδ

γ + δ
(iγ − jδ) +

γδ2

γ + δ
+

γ2δ

γ + δ

=ci,j − γδ +
δ + γ

γ + δ
γδ = ci,j.

Therefore ai,j −Kci,j satisfies (A3.2).
Moreover,

ai,0 −Kci,0 ≤ K(iγ)2 −K(iγ)2 −Kiγδ ≤ 0, 1 ≤ i ≤ m,

a0,j −Kc0,j ≤ K(jδ)2 −K(jδ)2 −Kjγδ ≤ 0, 1 ≤ j ≤ n.

An easy double induction argument for i and j implies that

ai,j −Kci,j ≤ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n

which is (A3.5).

Case 0 < r < 2. Set bi,j = (ai,j)
2/r. Since 2/r > 1 we have

bi,j = (ai,j)
2/r ≤

( γ

γ + δ
ai,j−1 +

δ

γ + δ
ai−1,j

)2/r

≤ γ

γ + δ
bi,j−1 +

δ

γ + δ
bi−1,j

by Jensen’s inequality. Moreover

bi,0 ≤ K2/r(iγ)2, 1 ≤ i ≤ m, and b0,j ≤ K2/r(jδ)2, 1 ≤ j ≤ n.

Since ai,j = (bi,j)
r/2, the result follows from case r = 2.

Appendix 4

The aim of this Appendix is to state without proofs some results of the theory of “nonlinear
semigroups” on Banach and Hilbert spaces.
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Notation

Let X be a nonempty set and let A,B ⊂ X ×X.

D(A) := {x ∈ X : ∃y ∈ X such that (x, y) ∈ A}
R(A) := {y ∈ X : ∃x ∈ X such that (x, y) ∈ A}
A−1 := {(y, x) ∈ X ×X : (x, y) ∈ A}
I := {(x, x) ∈ X ×X : x ∈ X}

A ◦B := {(x, y) ∈ X ×X : ∃z ∈ X with (x, z) ∈ B and (z, y) ∈ A)}

Let X be a real vector space. If A,B ⊂ X ×X, and λ ∈ R, one sets

A±B := {(x, y ± z) : (x, y) ∈ A, (x, z) ∈ B}
λA := {(x, λy) : (x, y) ∈ A}.

Let (X, ‖ · ‖) be a normed space.

Definition A4.1. A nonempty subset B of X × X is called accretive (−B dissipative)
if, for every λ > 0,

(I + λB)−1 : R(I + λB)→ X

is single-valued (i.e. (I + λB)−1x is a singleton for every x ∈ R(I + λB) or, equivalently,
(I + λB)−1 is the graph of a function from R(I + λB) into X. By abuse of notation we
shall also denote the element of this singleton by (I + λB)−1x), and we have

‖(I + λB)−1x1 − (I + λB)−1x2‖ ≤ ‖x1 − x2‖

for every x1, x2 ∈ R(I + λB).

Remark A4.1. Clearly a nonempty set B ⊂ X ×X is accretive iff

‖x1 − x2‖ ≤ ‖(x1 − x2) + λ(y1 − y2)‖

for every λ > 0 and every (xi, yi) ∈ B, i = 1, 2.

Remark A4.2. If B is accretive then λB + µI is also accretive for λ, µ ≥ 0. In particular,
if A ⊂ X × X is such that A + ωI is accretive for some ω ∈ R, then (I + λA)−1 is the
graph of a function whenever λ > 0 satisfies ωλ < 1.

Theorem A4.2 ([CL71]). Let (X, ‖·‖) be a real Banach space and let A ⊂ X×X be such
that there exists ω ∈ R for which A + ωI is accretive. Suppose that there exists λ0 > 0
such that

(A4.1) R(I + λA) ⊇ D(A)

for all λ ∈ (0, λ0), where D(A) denotes the closure of D(A) in (X, ‖ · ‖).
Then

(A4.2) lim
n→∞

[(
I + t

n
A
)−1]n

x

exists for x ∈ D(A) and t > 0.
Let S(0)x = x and S(t)x be the limit in (A4.2) for x ∈ D(A) and t > 0. Then

{S(t)}t≥0 is a C0-semigroup on D(A) which satisfies [S(t)]Lip ≤ eωt, t ≥ 0. Moreover, if
x ∈ D(A) and u(t) := S(t)x for t ≥ 0, then u|[0,T ] ∈ Lip([0, T ];X) for every T > 0.
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Next (for simplicity) we suppose in addition that the set A ⊂ X ×X satisfies instead
of (A4.1) the stronger assumption

(A4.3) R(I + λA) = X

for all λ > 0 such that ωλ < 1. Then the following holds:

(i) If u defined above is strongly right-differentiable at some t ∈ [0,∞), then

(A4.4) u(t) ∈ D(A) and − d+

dt
u(t) ∈ Au(t).

(ii) If v ∈ C([0, T ];X) for some T > 0 satisfies

v(0) ∈ D(A),(A4.5)

v ∈ AC([ε, T ];X) for every ε ∈ (0, T ),(A4.6)

v is strongly differentiable a.e. in (0, T ),(A4.7)

v(t) ∈ D(A) a.e. in (0, T ),(A4.8)

− d

dt
v(t) ∈ Av(t) a.e. in (0, T ),(A4.9)

then
v(t) = S(t)v(0) for every t ∈ (0, T ].

Hilbert space case (see [Br73] and references)

If A + ωI is accretive for some ω ∈ R, if assumption (A4.3) holds and x ∈ D(A), then
t 7→ S(t)x is right-differentiable for every t ≥ 0.

If moreover A + ωI is the subdifferential of a proper, lower semicontinuous, convex
function φ : X → (−∞,+∞] and x ∈ D(A) then t 7→ S(t)x is right-differentiable for
every t > 0.

Appendix 5

Lemma A5.1. Let ψ : X → (−∞,+∞] be proper, l.s.c. and convex. Then there exist
b ∈ X and c ∈ R such that

(A5.1) ψ(x) ≥ 〈b, x〉+ c, x ∈ X.

Proof. Consider the epigraph of ψ defined by epi(ψ) := {(x, t) ∈ X×R : ψ(x) ≤ t}. Since
ψ is proper, epi(ψ) 6= ∅. Moreover, epi(ψ) is convex in view of the convexity of ψ. We
introduce the innerproduct 〈〈·, ·〉〉 in X×R defined by 〈〈(x1, t1), (x2, t2)〉〉 := 〈x1, x2〉+ t1t2.
Clearly (X × R, 〈〈·, ·〉〉) is a Hilbert space. The subset epi(ψ) is closed in X × R as a
consequence of the lower semicontinuity of ψ. Let x0 ∈ D(ψ) and t0 < ψ(x0). Then
(x0, t0) /∈ epi(ψ). By the projection theorem on closed convex sets in Hilbert spaces, there
exists a unique element (x, t) ∈ epi(ψ) satisfying

(A5.2) 〈x− x, x0 − x〉+ (t− t)(t0 − t) ≤ 0

for every (x, t) ∈ epi(ψ).
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Choose x = x0 and t ≥ φ(x0) in (A5.2). Since 0 < 〈x0 − x, x0 − x〉 we see that t0 − t
cannot be zero. Moreover, choosing t > t shows that t0 − t has to be negative. Finally,
choosing x ∈ D(ψ) and t = ψ(x) in (A5.2) we obtain (A5.1) with

b :=
1

t− t0
(x− x0) and c := t+

1

t− t0
〈x, x− x0〉 .

Clearly (A5.1) holds for x ∈ X \D(ψ).
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