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1. Introduction to SPDE

Stochastic (partial) differential equations (SPDE)
have very important applications in many fields
such as economics, finance, biology, physics
and social sciences. For example, all kinds of
dynamics with stochastic influence in nature or
man-made complex systems can be modeled by
stochastic evolution equations, i.e. SPDE of evo-
lutionary type. We can formulate some concrete
examples in applications:

• Application in Finance
Many researchers aim at a better understand-
ing of stochastic evolution of financial markets
through the study of appropriate mathematical
models using S(P)DE. For instance, the dynam-
ics of short interest rate X can be modeled by the
following equation

dXt = k(r −Xt)dt + σ
√

XtdWt,

where Wt is a Brownian Motion which models the
random factor and k,r,σ are some parameters.

• Application in Physics and Chemistry
In physics, one can use SPDE to model the evo-
lution process of some experiment.
(i) Stochastic porous media equations

dXt = 4(Xm
t )dt + B(Xt)dWt,

where 1 < m is a constant and Wt is a cylin-
der Wiener process on a separable Hilbert space.
The above equation is a stochastic version of the
classical porous media equation (i.e. B ≡ 0)
which describes the flow of ideal gas in some
porous media, here the solution Xt denotes the
density of the gas and B(·)dWt describes some
random noise in the model.

(ii) Stochastic reaction-diffusion equations

dXt = (∆Xt − c|Xt|p−2Xt)dt + B(Xt)dWt,

where 1 ≤ p is a constant and Wt is a cylinder
Wiener process on a separable Hilbert space.
This equation can be used to model transport
phenomena in chemistry, population dynamics,
transmission lines and flame propagations etc.

• Application in Biology and Social Sciences
SPDE has been also used in population genetics
to model the changes in the structure of popu-
lations in time and space. For instance, we can
propose the following equation

dX(t, ξ) = a∆X(t, ξ)dt + b
√

X+(t, ξ)dWt, ξ ∈ Rd

for the mass distribution X(t, ·) of the population
at time t ≥ 0. By studying this equation we can
make some prediction about the population struc-
ture in the future and make some improvement.

2. Variational Approach for SPDE

In general, we can formulate stochastic evolution
equations as follows

dXt = A(t,Xt)dt + B(t,Xt)dWt. (1)

There basically exist three different approaches
to analyze SPDE in the literature: martingale ap-
proach, semigroup approach and variational ap-
proach. In the practical applications, one can
use numerical analysis to simulate the solution of
S(P)DE. The following graph is the simulation to
the solution of a specific stochastic heat equation.

In this work we will use the variational approach,
i.e. the coefficients A and B satisfy some mono-
tone and coercive conditions such that (1) covers
a large class of quasilinear and nonlinear SPDE.
The existence and uniqueness of solution to (1)
was established in [1]. The main aim of this work
is to obtain some useful properties of the solu-
tion and some related quantities associated with
SPDE.

3. Main Results and Their Applications

• Large deviation principle (LDP)
Consider (1) driven by small noise, i.e.

dXε
t = A(t,Xε

t )dt + εB(t,Xε
t )dWt, Xε

0 = x. (2)

Let ε → 0, then “Xε ⇀ u”, where u satisfies

dut

dt
= A(t, ut), u0 = x.

In [2] the Freidlin-Wentzell type LDP is estab-
lished for (2) by using a weak convergence ap-
proach. Roughly speaking, the LDP means the
rate of convergence above is exponentially fast.
The main results are applied to derive the LDP
for stochastic reaction-diffusion equations, the
stochastic p-Laplace equation, stochastic porous
media and fast diffusion equations in [2], which
also improved some well-known results in the lit-
erature.

• Harnack Inequality and its applications:
By using a coupling argument and Girsanov
transformation (cf.[3,4]), the Harnack inequality

(PtF (y))p ≤ PtF
p(x)C(p, t, x, y), ∀F ≥ 0

and the strong Feller property are established for
the transition semigroup {Pt} associated with (1)
driven by additive type noise. Moreover, based on
this Harnack inequality, we establish many result-
ing properties as follows:
(i) the existence, uniqueness and concentration
property of invariant measures;

(ii) the ergodicity, contractivity (hyperbounded or
ultrabounded) and compactness of the associ-
ated transition semigroup. In particular, we give
a very easy proof for the (topological) irreducibil-
ity by using the Harnack inequality.
(iii) the convergence rate of the transition semi-
group to its invariant measure, which also implies
the decay estimate of the solutions to the corre-
sponding deterministic evolution equations (e.g.
p-Laplace equation, porous media equations).
(iv) some exponentially ergodicity of the transition
semigroup and the existence of a spectral gap.

These results are applied to stochastic porous
media equations, stochastic reaction-diffusion
equations and the stochastic p-Laplace equation
(cf.[3,4,5]) as examples. The main idea of cou-
pling argument is to make two processes which
start from different points to move together before
certain time by adding some external force, e.g.
see the following graph.

• Better smoothness of trajectory
In stochastic control and filter theory, one needs
that the process has more smooth trajectory for
some applications. In this part we investigate the
invariance of subspaces under the solution flow
of SPDE. Under some assumptions, we prove
that the solution to (1) takes values in some suit-
able subspace of the state space if the initial state
does so. This gives some stronger regularity es-
timates for the solution of SPDE, which can be
used for some further study of the corresponding
random dynamical systems (e.g. the existence of
random attractor).
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