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‘ 1. Introduction |

1.1 Stochastic Equations

We consider Harnack inequalities and their ap-
plications for the following stochastic equations
(SEs).

Single-valued SEs: d.X, =

O)DE <= with irregular drift
fBM
< OU process Gauss <: BM

hnear Lévy
SPDE
Perturbatlon of

semi-
lmear

Gauss OU process

Multi-valued SEs: (X, ¢ AX, dt + BX,dt + o;dW;.

MSDEs (on R%) & MSEEs (on Gelfand triple)
We just show the main technical by establish-
ing Harnack inequalities for OU processes.

1.2 Transition Semigroup

AX, dt + F(t, X;) dt + dL;.

Let IH be a real separable Hilbert space with inner
product (-,-) and norm | - |. Let X be a solution
process to some stochastic equation.

—or every t € |0,00), Xy(+), X;: (Q,.7,P) —
(H,B(H)) is a r.v.. Denote the marginal distribu-
tion of X; by -

pi =P o (X))
Then we define the transition semigroup by

= [ Fxyap= B f(x7) = [ f2) dui
for every bounded measurable function f on H.

1.3 Harnack Inequalities

The Harnack inequality we are interested in which
IS first introduced by Wang in 1997 [2], is of the
following form

(Ptf)&(m) S C<t7 Of,l',y)Pthé(y),
for every z,y € H,f € ¢ (H),a > 1, where

C(t, o, x,y) is a constant independent of f.
Applications of Harnack inequalities including

Regularizing Property, Contractivity, Heat Kernel
Estimates, Bound of the Norm of Heat Kernel etc..

| 2. Main Technique |

2.1 How to get Harnack inequalities?

The main technique we use is applying Holder's
iInequality after a measure transformation. There
are two levels of measure transformation which
are used in [3] (Relative density method) and [1]
(Coupling argument+Girsanov’s transformation).

Holder’s Ineq.

_|_

Measure Trans.

We use the image measure transformation for
Gauss case; and use the measure transformation
on ) for Lévy case.

Coupling
_|_
Girsanov Trans.

Relative Density

- - - - - o o o e e E» e - - - - >

Trans. of IP
on (£, %)

Trans. of
on (H, B(H))

2.2 Preliminary: Null Controllable
Consider the system

dr; = Az, dt + RYu, dt,
ro=1vy —x € .

(1)

We say a system of the form (1) is Null Control-
lable in time T if for each initial data, there exist
w € L*([0,T],H) such that z = 0.

Define Qr = [, S;RS; dt. Then

r(H) € QY (H)

Let I'y = Q,'/*S7. We have a representation for
the Minimal Energy of driving the Initial states
y—xto0intimeT:

T
Tr(z — y)|* = inf {/0 ug|*ds: u € L2} .

‘ 3. Gauss Case |

3.1 Gauss OU Process and Semigroup
Mild solution of the Langevin's Equation:
dX;, = AX,dt + RY>dW,, X,=uz € H.

Assume that );,, 0 < t < oo, is of trace class.
Then

Null Controllable < | S

¢
Xt — Stl' —|—/ St_SRl/Q dWS, t Z 0.
0

We know

Xt ~ N(Stl', Qt)

Therefore the Gaussian Ornstein-Uhlenbeck
Semigroup is given by

— /]Hf<StZE + 2) N(0, Q;)(dz).

3.2 Harnack Inequality for Gaussian
OU Semigroup

Assume
* (); Is of trace class;

+ Si(H) € Q,”*(H).

By using the Cameron-Martin formula for Gaus-
sian measures, we have

(P () < exp (gw . y>2) (P, @

foreveryt >0, f € ¢"(H),z,y € Hand o, 3 > 1
satisfying + + 5 = 1.

3.3 Application: Strong Feller Prop-
erty

For Gauss OU semigroup P,. The following state-
ments are equivalent to each other.

- S(H) € Q,”*(H);
* Harnack inequality holds;
* P, 1s strongly Feller.

| 4. Lévy Case |

4.1 Transformation of Measures on ¢

Let (X7, Q) and (Y)’,P) be two processes on
(Q, #r). Assume three conditions
1. Bf(z) = Ef (X)), Pif(y) = Epf(Y});
2. Q = prlP;
3. X7 =Y/,
Then
Prf(x)=Eqf(X7)=Eqf(Y7)=Epprf(Yr)
< (Eppp)""(Ep (YY)
= (Eppp)""(Prf*(y)""
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Hence we get the following Harnack inequality

(Prf)*(z) < [EppiPif(y).

4.2 Girsanov’s Theorem for Levy Pro-
cess

Let (Z;)o<:<T be a Lévy process with charac-
teristic triple (b, R, ) under probability measure
(€2, (Fr)o<t<T, IP) Under some new probability
measure Q = p" (T)P

/w 0<t<T

isalsoa (b, R,v)—-Lévy process on (£, .Z, (F)o<i<T),
where we will take' |4)(t) = R"*u,, 0 <t < T, and
u; 1S the null control of the system (1).

4.3 Levy Driven OU Process
Consider Y’ driven by Z; on (Q, .%;, P):

Yy =y,
dY,) = AY)Y dt + dZ;.
We define I, f(y) = Ep/(Y}"). We also consider
X*drivenby Z; on (Q,.%,Q). (Q = p'"' P)

X, ==,
dX = AX? dt + dZ,,

= AXTdt + dZ,—RY?u, dt.

We see P, f(x) = Eqf(X/). By noting that Z, is
a drift transformation of| Z; and note that z+ = 0,
we get

th = Y;y—$t = XT — YT

4.4 Harnack Inequality for Levy Driven
OU Process

By the procedure introduced in subsection 4.1
for Lévy OU semigroup P, we have

Ry <o (3 [ ol ds) (B W).

=1, f € ¢ (H),

.

vVt > 0,a,08 > 1 satlsfylng + 5
x,y € H.

Taking infimum over all null control «, we still can
get an inequality with the same form as (2).
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